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Exercise 1: Support Vector Machines

Consider a dataset with a single feature x € R and labels y € {+1,—1}. Data points
—3,—2,3 have label +1 and data points —1,0, 1 have label —1.

a) No, the dataset is not linearly separable. This becomes obvious once we plot the
data points. There is no single line that can completely separate the two classes.

b) We can choose a feature map ¢(z) = (x 22)T € R? so that the dataset becomes
linearly separable. Now we can draw a line, actually infinitely many lines, that
separate the two classes.




¢) Construct a maximum-margin hyperplane and mark the support vectors.

The decision boundary in the original feature space corresponds to the x-coordinates
of the intersections between the hyperplane and the feature function (f(z) = x?).
If we compute this exactly, the boundaries lie at x = 1.9067 and x = —1.5734. In
the original space any point between these two would be classified as class -1, while
all other points as class +1.
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We can add any number of points to the training set without changing the hyper-
plane as long as the points lie "behind” the support vectors. This is because the
separating hyperplane depends only on the support vectors. If we introduce a point
that violates the margin, then this point should be considered a support vector and
a new hyperplane should be computed.

Exercise 2: Gaussian Processes (Regression)

We want to approximate a function and we are given some samples (as training set)
with input values x and outputs y:

x = (—0.8372, —0.4558,0.6902, 0.1114, —0.4678)
y = (—0.6414, —1.0286, —0.6893, —1.4021, —1.0594)

Suppose it has zero mean. Consider the kernel:

k(z;,x;) = O'J% exp(—@(a:i —2;)?) + 020y

where 0y =1, 0, = 0.5 and d;; = 1, if ¢ = j and 0 otherwise.



a) Two new points x, = (—0.5,0.5) appear. Compute the mean value ¥, for [ = 1.

We must first compute the Gram matrix (covariance of training points),
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Then we compute the Cholesky decomposition of K (K = LLT),
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and the a vector as a = L™ (L™ y)
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To evaluate the function on the test points, we first need to compute the matrix K,
which is the kernel function applied between the test points and all training points,

Then our prediction is simply
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b) Try different values for the hyperparameter [. Plot y, against x, with the confidence
intervals (two standard deviations). How does the function change? Why?

1=0.10 1=0.40 1=0.70

1=1.00 1=1.30 1=1.60

As we can see, the function becomes smoother as we increase [. For small [ the
function fits better to the training data but cannot predict test data well. The
variance is lower (confidence is higher) on the training points. As we increase [ the
function becomes smoother, it generalizes better and the variance becomes more
uniform. If [ gets too large, the function ignores the training points and does not
generalize well anymore.

Exercise 3: Gaussian Processes (Programming)

See code.



