
TU München
Fakultät für Informatik
PD Dr. Rudolph Triebel
John Chiotellis

Machine Learning for Robotics and Computer Vision
Winter term 2015

Solution Sheet 5
Topic: Boosting and Kernels

January 15th, 2016

Exercise 1: Support Vector Machines

Consider a dataset with a single feature x ∈ R and labels y ∈ {+1,−1}. Data points
−3,−2, 3 have label +1 and data points −1, 0, 1 have label −1.

a) No, the dataset is not linearly separable. This becomes obvious once we plot the
data points. There is no single line that can completely separate the two classes.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

b) We can choose a feature map φ(x) = (x x2)T ∈ R2 so that the dataset becomes
linearly separable. Now we can draw a line, actually infinitely many lines, that
separate the two classes.

-6 -4 -2 0 2 4 6

-1

0

1

2

3

4

5

6

7

8

9

10



c) Construct a maximum-margin hyperplane and mark the support vectors.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-1

0

1

2

3

4

5

6

7

8

9

10

The decision boundary in the original feature space corresponds to the x-coordinates
of the intersections between the hyperplane and the feature function (f(x) = x2).
If we compute this exactly, the boundaries lie at x = 1.9067 and x = −1.5734. In
the original space any point between these two would be classified as class -1, while
all other points as class +1.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

We can add any number of points to the training set without changing the hyper-
plane as long as the points lie ”behind” the support vectors. This is because the
separating hyperplane depends only on the support vectors. If we introduce a point
that violates the margin, then this point should be considered a support vector and
a new hyperplane should be computed.

Exercise 2: Gaussian Processes (Regression)

We want to approximate a function and we are given some samples (as training set)
with input values x and outputs y:

x = (−0.8372,−0.4558, 0.6902, 0.1114,−0.4678)

y = (−0.6414,−1.0286,−0.6893,−1.4021,−1.0594)

Suppose it has zero mean. Consider the kernel:

k(xi, xj) = σ2
f exp(− 1

2l2
(xi − xj)2) + σ2

nδij

where σf = 1, σn = 0.5 and δij = 1, if i = j and 0 otherwise.



a) Two new points x∗ = (−0.5, 0.5) appear. Compute the mean value y∗ for l = 1.

We must first compute the Gram matrix (covariance of training points),

K =


1.25 0.92985 0.31146 0.63768 0.93405
0.92985 1.25 0.51858 0.85141 0.99993
0.31146 0.51858 1.25 0.84577 0.51146
0.63768 0.85141 0.84577 1.25 0.84558
0.93405 0.99993 0.51146 0.84558 1.25


Then we compute the Cholesky decomposition of K (K = LLT ),

L =


1.118 0 0 0 0
0.83168 0.7472 0 0 0
0.27858 0.38396 1.0124 0 0
0.57036 0.50463 0.48708 0.65787 0
0.83544 0.40834 0.12045 0.15862 0.58791


and the α vector as α = L−T (L−1y),

α =


0.39321
-0.16651
0.41008
-1.2737
-0.31433


To evaluate the function on the test points, we first need to compute the matrix K∗,
which is the kernel function applied between the test points and all training points,

K∗ =


0.94473 0.409
0.99902 0.63332
0.49249 0.98207
0.82952 0.92728
0.99948 0.62605


Then our prediction is simply

y∗ = KT
∗ a =

(
−0.9636
−0.9198

)



b) Try different values for the hyperparameter l. Plot y∗ against x∗ with the confidence
intervals (two standard deviations). How does the function change? Why?

-1 -0.5 0 0.5 1

-3

-2

-1

0

1

2

3
l= 0.10

-1 -0.5 0 0.5 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
l= 0.40

-1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1
l= 0.70

-1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5
l= 1.00

-1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5
l= 1.30

-1 -0.5 0 0.5 1

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
l= 1.60

As we can see, the function becomes smoother as we increase l. For small l the
function fits better to the training data but cannot predict test data well. The
variance is lower (confidence is higher) on the training points. As we increase l the
function becomes smoother, it generalizes better and the variance becomes more
uniform. If l gets too large, the function ignores the training points and does not
generalize well anymore.

Exercise 3: Gaussian Processes (Programming)

See code.


