Excurse: Conjugacy

Assume we have a binary random variable $x \in\{0,1\}$ and we are given a parameter $\mu, 0 \leq \mu \leq 1$ so that

$$
p(x=1 \mid \mu)=\mu \quad p(x=0 \mid \mu)=1-\mu
$$

together this gives: $\quad p(x \mid \mu)=\mu^{x}(1-\mu)^{1-x}$
"Bernoulli Now we have a set $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$ of independent binary events. It has the probability:

$$
\begin{aligned}
p(\mathcal{D} \mid \mu) & =\prod_{n-1}^{N} p\left(x_{n} \mid \mu\right)=\prod_{n=1}^{N} \mu^{x_{n}}(1-\mu)^{1-x_{n}} \\
& =\prod_{x_{n}=1} \mu^{x_{n}}(1-\mu)^{1-x_{n}} \prod_{x_{n}=0} \mu^{x_{n}}(1-\mu)^{1-x_{n}}
\end{aligned}
$$

Excurse: Conjugacy

which results in: $\quad p(\mathcal{D} \mid \mu)=\mu^{m}(1-\mu)^{N-m}$ where m is the number of events where $x_{n}=1$.

There exist $\binom{N}{m}$ possibilities for \mathcal{D}, so

$$
p(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}
$$

"Binomial distribution"
is the probability that there are m positive events in a set (sequence) of N, where

$$
\binom{N}{m}=\frac{N!}{(n-m)!m!}
$$

Maximum Likelihood

To find an optimal parameter μ we can use MLE:
$\log p(\mathcal{D} \mid \mu)=\sum_{n=1}^{N} \log p\left(x_{n} \mid \mu\right)=\sum_{n=1}^{N}\left(x_{n} \log \mu+\left(1-x_{n}\right) \log (1-\mu)\right.$

Maximum Likelihood

To find an optimal parameter μ we can use MLE:
$\log p(\mathcal{D} \mid \mu)=\sum_{n=1}^{N} \log p\left(x_{n} \mid \mu\right)=\sum_{n=1}^{N}\left(x_{n} \log \mu+\left(1-x_{n}\right) \log (1-\mu)\right.$
and we obtain: $\mu=\frac{1}{N} \sum_{n=1}^{N} x_{n}$ or, equivalently: $\mu=\frac{m}{N}$
Suppose we observe " 1 " in three trials, i.e. $x_{1}=x_{2}=x_{3}=1$. It follows $\mu_{M L}=1$.

This is an example of extreme overfitting due to the maximum likelihood approach!

Bayesian Inference

To address the problem of overfitting, we define a prior probability for the parameter μ and compute:

Goal: Find a prior distribution so that the posterior has the same functional form as the prior!
Then, the posterior can be used as a new prior when new data is observed.
Such a prior is called conjugate to the likelihood.

A Conjugate Prior for the Binomial Dist.

Observation: if prior is proportional to powers of μ $1-\mu$ then the posterior will be so, too.

A Conjugate Prior for the Binomial Dist.

Observation: if prior is proportional to powers of μ $1-\mu$ then the posterior will be so, too.
Thus, the conjugate prior for the binomial distribution is the beta-distribution:

$$
\begin{aligned}
p(\mu \mid a, b) & =Z_{\beta}^{-1} \mu^{a-1}(1-\mu)^{b-1} \quad a>0, b>0 \\
Z_{\beta} & =\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
\end{aligned}
$$

Here, a and b can be interpreted as the assumed prior number of positive and negative events

Obtaining the Posterior

Now we can use the prior and the likelihood:

$$
p(\mu \mid m, N, a, b) \propto p(m \mid \mu, N) p(\mu) \propto \mu^{m+a-1}(1-\mu)^{l+b-1}
$$

$$
l=N-m
$$

This gives another beta-distribution:

$$
p(\mu \mid m, l, a, b)=\frac{\Gamma(m+a+l+b)}{\Gamma(m+a) \Gamma(l+b)} \mu^{m+a-1}(1-\mu)^{l+b-1}
$$

where the effective number of observations for $x=1$ and $x=0$ has been increased by m and l

A Simple Example

$p(\mu)=\operatorname{Beta}(\mu \mid a=2, b=2) \quad p(m \mid \mu, N)=\operatorname{Bin}(m=1 \mid N=1, \mu) \quad p(\mu)=\operatorname{Beta}(\mu \mid a=3, b=2)$

- Consider the example $m=1, N=1$
- The prior is defined by $a=2, b=2$
- Using Bayesian inference we obtain the posterior that is shifted towards $\mu=1$
- Overfitting can be avoided!

The Same For Multinomial Variables

In the case of K possible states of x we have

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{K}\right) \quad \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right) \quad \mu_{k} \geq 0 \quad \sum_{k=1}^{K} \mu_{k}=1
$$

The likelihood is then a multinomial distribution:

$$
\operatorname{Mult}\left(m_{1}, \ldots, m_{K} \mid \boldsymbol{\mu}, N\right)=\binom{N}{m_{1}, \ldots, m_{K}} \prod_{k=1}^{K} \mu_{k}^{m_{k}}
$$

The conjugate prior of that is the Dirichlet distribution:

$$
\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1}
$$

The Dirichlet Distribution

$$
\begin{aligned}
& \qquad \operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1} \\
& \alpha_{0}=\sum_{k=1}^{K} \alpha_{k} \quad 0 \leq \mu_{k} \leq 1 \quad \sum_{k=1}^{K} \mu_{k}=1 \\
& \text { - Example with three variables } \\
& \text { - The distribution is confined } \\
& \text { to a simplex (in this case a } \\
& \text { triangle) }
\end{aligned}
$$

Sampling Methods II

Gibbs Sampling

- Initialize $\left\{z_{i}: i=1, \ldots, M\right\}$
- For $\tau=1, \ldots, T$
- Sample $z_{1}^{(\tau+1)} \sim p\left(z_{1} \mid z_{2}^{(\tau)}, \ldots, z_{M}^{(\tau)}\right)$
- Sample $z_{2}^{(\tau+1)} \sim p\left(z_{2} \mid z_{1}^{(\tau+1)}, \ldots, z_{M}^{(\tau)}\right)$
- Sample $z_{M}^{(\tau+1)} \sim p\left(z_{M} \mid z_{1}^{(\tau+1)}, \ldots, z_{M-1}^{(\tau+1)}\right)$

Idea: sample from the full conditional This can be obtained, e.g. from the Markov blanket in graphical models.

Gibbs Sampling: Example

- Use an MRF on a binary image with edge potentials $\psi\left(x_{s}, x_{t}\right)=\exp \left(J x_{s} x_{t}\right) \quad$ ("Ising model") and node potentials $\psi\left(x_{t}\right)=\mathcal{N}\left(y_{t} \mid x_{t}, \sigma^{2}\right)$

$$
x_{t} \in\{-1,1\}
$$

Gibbs Sampling: Example

- Use an MRF on a binary image with edge potentials $\psi\left(x_{s}, x_{t}\right)=\exp \left(J x_{s} x_{t}\right) \quad$ ("Ising model") and node potentials $\psi\left(x_{t}\right)=\mathcal{N}\left(y_{t} \mid x_{t}, \sigma^{2}\right)$
- Sample each pixel in turn
sample 1, Gibbs

After 1 sample
sample 5, Gibbs

After 5 samples
mean after 15 sweeps of Gibbs

Average after 15 samples

Gibbs Sampling for GMMs

- We start with the full joint distribution:

$$
p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi})=p(X \mid Z, \boldsymbol{\mu}, \Sigma) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi}) \prod_{k=1}^{K} p\left(\boldsymbol{\mu}_{k}\right) p\left(\Sigma_{k}\right)
$$

Gibbs Sampling for GMMs

- We start with the full joint distribution:
$p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi})=p(X \mid Z, \boldsymbol{\mu}, \Sigma) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi}) \prod_{k=1} p\left(\boldsymbol{\mu}_{k}\right) p\left(\Sigma_{k}\right)$
- It can be shown that the full conditionals are:

$$
\begin{aligned}
p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}\right) & \propto \pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \Sigma_{k}\right) \\
p(\boldsymbol{\pi} \mid \mathbf{z}) & =\operatorname{Dir}\left(\left\{\alpha_{k}+\sum_{i=1}^{N} z_{i k}\right\}_{k=1}^{K}\right) \\
p\left(\boldsymbol{\mu}_{k} \mid \Sigma_{k}, Z, X\right) & =\mathcal{N}\left(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{k}, V_{k}\right) \quad \text { (linear-Gaussian) } \\
p\left(\Sigma_{k} \mid \boldsymbol{\mu}_{k}, Z, X\right) & =\mathcal{I} \mathcal{W}\left(\Sigma_{k} \mid S_{k}, \nu_{k}\right)
\end{aligned}
$$

Gibbs Sampling for GMMs

- First, we initialize all variables
- Then we iterate over sampling from each conditional in turn
- In the end, we look at μ_{k} and Σ_{k}

How Often Do We Have To Sample?

- Here: after 50 sample rounds the values don't change any more
- In general, the mixing time τ_{ϵ} is related to the eigen gap $\gamma=\lambda_{1}-\lambda_{2}$ of the transition matrix:

$$
\tau_{\epsilon} \leq O\left(\frac{1}{\gamma} \log \frac{n}{\epsilon}\right)
$$

Gibbs Sampling is a Special Case of MH

- The proposal distribution in Gibbs sampling is

$$
q\left(\mathbf{x}^{\prime} \mid \mathbf{x}\right)=p\left(x_{i}^{\prime} \mid \mathbf{x}_{-i}\right) \mathbb{I}\left(\mathbf{x}_{-i}^{\prime}=\mathbf{x}_{-i}\right)
$$

- This leads to an acceptance rate of:

$$
\alpha=\frac{p\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x} \mid \mathbf{x}^{\prime}\right)}{p(\mathbf{x}) q\left(\mathbf{x}^{\prime} \mid \mathbf{x}\right)}=\frac{p\left(x_{i}^{\prime} \mid \mathbf{x}_{-i}^{\prime}\right) p\left(\mathbf{x}_{-i}^{\prime}\right) p\left(x_{i} \mid \mathbf{x}_{-i}^{\prime}\right)}{p\left(x_{i} \mid \mathbf{x}_{-i}\right) p\left(\mathbf{x}_{-i}\right) p\left(x_{i}^{\prime} \mid \mathbf{x}_{-i}\right)}=1
$$

- Although the acceptance is 100%, Gibbs sampling does not converge faster, as it only updates one variable at a time.

11. Variational Inference

Motivation

-A major task in probabilistic reasoning is to evaluate the posterior distribution $p(Z \mid X)$ of a set of latent variables Z given data X (inference)
However: This is often not tractable, e.g. because the latent space is high-dimensional
-Two different solutions are possible: sampling methods and variational methods.

- In variational optimization, we seek a tractable distribution q that approximates the posterior.
- Optimization is done using functionals.

Variational Inference

In general, variational methods are concerned with mappings that take functions as input.
Example: the entropy of a distribution p

$$
\mathbb{H}[p]=\int p(x) \log p(x) d x
$$

"Functional"
Variational optimization aims at finding functions that minimize (or maximize) a given functional.
This is mainly used to find approximations to a given function by choosing from a family.
The aim is mostly tractability and simplification.

MLE Revisited

Analogue to the discussion about EM we have:

$$
\log p(X)=\mathcal{L}(q)+\mathrm{KL}(q \| p)
$$

$\mathcal{L}(q)=\int q(Z) \log \frac{p(X, Z)}{q(Z)} d Z \quad \mathrm{KL}(q)=-\int q(Z) \log \frac{p(Z \mid X)}{q(Z)} d Z$
Again, maximizing the lower bound is equivalent to minimizing the KL-divergence.
The maximum is reached when the KL-divergence vanishes, which is the case for $q(Z)=p(Z \mid X)$.
However: Often the true posterior is intractable and we restrict q to a tractable family of dist.

The KL-Divergence

Given: an unknown distribution p
We approximate that with a distribution q
The average additional amount of information is
$-\int p(\mathbf{x}) \log q(\mathbf{x}) d \mathbf{x}-\left(-\int p(\mathbf{x}) \log p(\mathbf{x}) d \mathbf{x}\right)=-\int p(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})} d \mathbf{x}=\mathrm{KL}(p \mid q)$
This is known as the Kullback-Leibler divergence
It has the properties: $\quad \mathrm{KL}(q \| p) \neq \operatorname{KL}(p \| q)$

$$
\operatorname{KL}(p \| q) \geq 0 \quad \operatorname{KL}(p \| q)=0 \Leftrightarrow p \equiv q
$$

This follows from Jensen's inequality

Factorized Distributions

A common way to restrict q is to partition Z into disjoint sets so that q factorizes over the sets:

$$
q(Z)=\prod_{i=1}^{M} q_{i}\left(Z_{i}\right)
$$

This is the only assumption about q !
Idea: Optimize $\mathcal{L}(q)$ by optimizing wrt. each of the factors of q in turn. Setting $q_{i}\left(Z_{i}\right)=q_{i}$ we have

$$
\mathcal{L}(q)=\int \prod_{i} q_{i}\left(\log p(X, Z)-\sum_{i} \log q_{i}\right) d Z
$$

Mean Field Theory

This results in:

$$
\mathcal{L}(q)=\int q_{j} \log \tilde{p}\left(X, Z_{j}\right) d Z_{j}-\int q_{j} \log q_{j} d Z_{j}+\text { const }
$$

where

$$
\log \tilde{p}\left(X, Z_{j}\right)=\mathbb{E}_{-j}[\log p(X, Z)]+\mathrm{const}
$$

Thus, we have $\quad \mathcal{L}(q)=-\operatorname{KL}\left(q_{j} \| \tilde{p}\left(X, Z_{j}\right)\right)+$ const l.e., maximizing the lower bound is equivalent to minimizing the KL-divergence of a single factor and a distribution that can be expressed in terms of an expectation:

$$
\mathbb{E}_{-j}[\log p(X, Z)]=\int \log p(X, Z) \prod_{i \neq j} q_{i} d Z_{-j}
$$

Mean Field Theory

Therefore, the optimal solution in general is

$$
\log q_{j}^{*}\left(Z_{j}\right)=\mathbb{E}_{-j}[\log p(X, Z)]+\mathrm{const}
$$

In words: the log of the optimal solution for a factor q_{j} is obtained by taking the expectation with respect to all other factors of the log-joint probability of all observed and unobserved variables
The constant term is the normalizer and can be computed by taking the exponential and marginalizing over Z_{j}
This is not always necessary.

Variational Mixture of Gaussians

- Again, we have observed data $X=\left\{\mathbf{x}_{1}, \ldots, \mathrm{x}_{N}\right\}$ and latent variables $Z=\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right\}$
- Furthermore we have

$$
p(Z \mid \boldsymbol{\pi})=\prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{n k}} \quad p(X \mid Z, \boldsymbol{\mu}, \Lambda)=\prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}\left(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \Lambda^{-1}\right)^{z_{n k}}
$$

- We introduce priors for all parameters, e.g.

$$
\begin{aligned}
& p(\boldsymbol{\pi})=\operatorname{Dir}\left(\boldsymbol{\pi} \mid \boldsymbol{\alpha}_{0}\right) \\
& p(\boldsymbol{\mu}, \Lambda)=\prod_{k=1}^{K} \mathcal{N}\left(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{0},\left(\beta_{0} \Lambda_{k}\right)^{-1}\right) \mathcal{W}\left(\Lambda_{k} \mid W_{0}, \nu_{0}\right)
\end{aligned}
$$

Variational Mixture of Gaussians

- The joint probability is then:
$p(X, Z, \boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)=p(X \mid Z, \boldsymbol{\mu}, \Lambda) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi}) p(\boldsymbol{\mu} \mid \Lambda) p(\Lambda)$
- We consider a distribution q so that

$$
q(Z, \boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)=q(Z) q(\boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)
$$

- Using our general result:

$$
\log q^{*}(Z)=\mathbb{E}_{\boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda}[\log p(X, Z, \boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)]+\mathrm{const}
$$

- Plugging in:
$\log q^{*}(Z)=\mathbb{E}_{\boldsymbol{\pi}}[\log p(Z \mid \boldsymbol{\pi})]+\mathbb{E}_{\boldsymbol{\mu}, \Lambda}[\log p(X \mid Z, \boldsymbol{\mu}, \Lambda)]+$ const

Variational Mixture of Gaussians

- The joint probability is then:
$p(X, Z, \boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)=p(X \mid Z, \boldsymbol{\mu}, \Lambda) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi}) p(\boldsymbol{\mu} \mid \Lambda) p(\Lambda)$
- We consider a distribution q so that

$$
q(Z, \boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)=q(Z) q(\boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)
$$

- Using our general result:

$$
\log q^{*}(Z)=\mathbb{E}_{\boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda}[\log p(X, Z, \boldsymbol{\pi}, \boldsymbol{\mu}, \Lambda)]+\mathrm{const}
$$

- Plugging in:
$\log q^{*}(Z)=\mathbb{E}_{\boldsymbol{\pi}}[\log p(Z \mid \boldsymbol{\pi})]+\mathbb{E}_{\boldsymbol{\mu}, \Lambda}[\log p(X \mid Z, \boldsymbol{\mu}, \Lambda)]+$ const
- From this we can show that:

$$
q^{*}(Z)=\prod_{n=1}^{N} \prod_{k=1}^{K} r_{n k}^{z_{n k}}
$$

Variational Mixture of Gaussians

This means: the optimal solution to the factor $q(Z)$ has the same functional form as the prior of Z. It turns out, this is true for all factors.

However: the factors q depend on moments computed with respect to the other variables, i.e. the computation has to be done iteratively.
This results again in an EM-style algorithm, with the difference, that here we use conjugate priors for all parameters. This reduces overfitting.

Example: Clustering

- 6 Gaussians
- After convergence, only two components left
- Complexity is traded off with data fitting
- This behaviour depends on a parameter of the Dirichlet prior

15

120

