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Excurse: Conjugacy

Assume we have a binary random variable 
and we are given a parameter   ,                 so that 
 
 
together this gives: 

Now we have a set                           of indepen-
dent binary events. It has the probability:

1

µ

p(x = 1 | µ) = µ

0  µ  1

p(x = 0 | µ) = 1� µ

p(x | µ) = µ

x(1� µ)1�x

“Bernoulli 
distribution”

p(D | µ) =
NY

n�1

p(x
n

| µ) =
NY

n=1

µ

xn(1� µ)1�xn

D = {x1, . . . , xN}

=
Y

xn=1

µxn(1� µ)1�xn
Y

xn=0

µxn(1� µ)1�xn



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Excurse: Conjugacy

which results in: 
where m is the number of events where           . 

There exist            possibilities for     , so 

is the probability that there are m positive events 

in a set (sequence) of N, where 
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Maximum Likelihood

To find an optimal parameter     we can use MLE:

3

µ

log p(D | µ) =
NX

n=1

log p(xn | µ) =
NX

n=1

(xn logµ+ (1� xn) log(1� µ)
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Maximum Likelihood

To find an optimal parameter     we can use MLE: 

and we obtain:                      or, equivalently: 

Suppose we observe  “1” in three trials,  
i.e.                         . It follows               . 

This is an example of extreme overfitting due to 
the maximum likelihood approach!
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NX
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log p(xn | µ) =
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Bayesian Inference

To address the problem of overfitting, we define a 
prior probability for the parameter   and compute: 

Goal: Find a prior distribution so that the posterior 
has the same functional form as the prior! 

Then, the posterior can be used as a new prior 
when new data is observed. 

Such a prior is called conjugate to the likelihood.

5

µ

PriorLikelihoodPosterior

p(µ | m,N) = Z�1
p p(m | µ,N)p(µ)

Normalizer
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A Conjugate Prior for the Binomial Dist.

Observation: if prior is proportional to powers of  
         then the posterior will be so, too.  

6

µ

1� µ
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A Conjugate Prior for the Binomial Dist.

Observation: if prior is proportional to powers of  
         then the posterior will be so, too.   

Thus, the conjugate prior for the binomial 
distribution is the beta-distribution: 

Here, a and b can be interpreted as the assumed 
prior number of positive and negative events

7

µ

1� µ

p(µ | a, b) = Z�1
� µa�1(1� µ)b�1 a > 0, b > 0

Z� =
�(a)�(b)

�(a+ b)
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Obtaining the Posterior

Now we can use the prior and the likelihood: 

This gives another beta-distribution: 

where the effective number of observations for 
         and          has been increased by m and l 

8

p(µ | m,N, a, b) / p(m | µ,N)p(µ) / µm+a�1(1� µ)l+b�1

l = N �m

x = 1
x = 0

p(µ | m, l, a, b) =
�(m+ a+ l + b)

�(m+ 1)�(l + b)
µm+a�1(1� µ)l+b�1

m+ a
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p(m | µ,N) = Bin(m = 1 | N = 1, µ) p(µ) = Beta(µ | a = 3, b = 2)

A Simple Example

• Consider the example m=1, N=1 
• The prior is defined by a=2, b=2 

• Using Bayesian inference we obtain the posterior 

that is shifted towards µ =1 

• Overfitting can be avoided!

9

p(µ) = Beta(µ | a = 2, b = 2)
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The Same For Multinomial Variables

In the case of K possible states of x we have 
 

The likelihood is then a multinomial distribution: 

The conjugate prior of that is the Dirichlet 
distribution:
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x = (x1, . . . , xK) µ = (µ1, . . . , µK) µk � 0
KX
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The Dirichlet Distribution

• Example with three variables 

• The distribution is confined 
to a simplex (in this case a 
triangle)
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Gibbs Sampling

• Initialize 

• For  

•Sample 

•Sample 

•... 

•Sample  

Idea: sample from the full conditional 

This can be obtained, e.g. from the Markov 
blanket in graphical models.
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{zi : i = 1, . . . ,M}
⌧ = 1, . . . , T

z(⌧+1)
1 ⇠ p(z1 | z(⌧)2 , . . . , z(⌧)M )

z(⌧+1)
2 ⇠ p(z2 | z(⌧+1)

1 , . . . , z(⌧)M )

z(⌧+1)
M ⇠ p(zM | z(⌧+1)

1 , . . . , z(⌧+1)
M�1 )
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials

14

 (xt) = N (yt | xt,�
2)

 (xs, xt) = exp(Jxsxt)

xt

yt

xs

xt 2 {�1, 1}
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Gibbs Sampling: Example

• Use an MRF on a binary image with edge 
potentials                                   (“Ising model”) 
and node potentials 

• Sample each pixel in turn 

15

 (xt) = N (yt | xt,�
2)

sample 1, Gibbs
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Gibbs Sampling for GMMs

• We start with the full joint distribution:  
 
 

16

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡)
KY

k=1

p(µk)p(⌃k)
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Gibbs Sampling for GMMs

• We start with the full joint distribution:  
 
 

• It can be shown that the full conditionals are:

17

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡)
KY

k=1

p(µk)p(⌃k)

p(zi = k | xi,µ,⌃,⇡) / ⇡kN (xi | µk,⌃k)

p(⇡ | z) = Dir({↵k +
NX

i=1

zik}Kk=1)

p(µk | ⌃k, Z,X) = N (µk | mk, Vk) (linear-Gaussian)

p(⌃k | µk, Z,X) = IW(⌃k | Sk, ⌫k)
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Gibbs Sampling for GMMs

• First, we initialize all variables 

• Then we iterate over sampling from each 
conditional in turn 

• In the end, we look at      and  

18

µk ⌃k
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How Often Do We Have To Sample?

• Here: after 50 sample rounds the values don’t 
change any more 

• In general, the mixing time     is related to the 
eigen gap                  of the transition matrix:

19

� = �1 � �2

⌧✏

⌧✏  O(

1

�
log

n

✏
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Gibbs Sampling is a Special Case of MH

• The proposal distribution in Gibbs sampling is 

• This leads to an acceptance rate of: 

• Although the acceptance is 100%, Gibbs 
sampling does not converge faster, as it only 
updates one variable at a time.

20

q(x0 | x) = p(x0
i | x�i)I(x0

�i = x�i)

↵ =
p(x0)q(x | x0)

p(x)q(x0 | x) =
p(x0

i | x0
�i)p(x

0
�i)p(xi | x0

�i)

p(xi | x�i)p(x�i)p(x0
i | x�i)

= 1
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Motivation

•A major task in probabilistic reasoning is to 
evaluate the posterior distribution              of a 

set of latent variables Z given data X (inference) 

However: This is often not tractable, e.g. 
because the latent space is high-dimensional 

•Two different solutions are possible: sampling 
methods and variational methods. 

•In variational optimization, we seek a tractable 

distribution q that approximates the posterior. 

•Optimization is done using functionals.

22

p(Z | X)
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Variational Inference

In general, variational methods are concerned 
with mappings that take functions as input. 

Example: the entropy of a distribution p 

Variational optimization aims at finding functions 
that minimize (or maximize) a given functional. 

This is mainly used to find approximations to a 
given function by choosing from a family. 

The aim is mostly tractability and simplification.

23

H[p] =

Z
p(x) log p(x)dx

“Functional”
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MLE Revisited 

Analogue to the discussion about EM we have: 

Again, maximizing the lower bound is equivalent 
to minimizing the KL-divergence. 

The maximum is reached when the KL-divergence 
vanishes, which is the case for                        . 

However: Often the true posterior is intractable 

and we restrict q to a tractable family of dist.

24

log p(X) = L(q) + KL(qkp)

L(q) =
Z

q(Z) log

p(X,Z)

q(Z)

dZ
KL(q) = �

Z
q(Z) log

p(Z | X)

q(Z)

dZ

q(Z) = p(Z | X)
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The KL-Divergence

Given: an unknown distribution p 

We approximate that with a distribution q 

The average additional amount of information is 

This is known as the Kullback-Leibler divergence 

It has the properties: 

This follows from Jensen’s inequality

25

�
Z

p(x) log q(x)dx�
✓
�
Z

p(x) log p(x)dx

◆
= �

Z
p(x) log

q(x)

p(x)
dx

KL(qkp) 6= KL(pkq)

= KL(pkq)

KL(pkq) � 0 KL(pkq) = 0 , p ⌘ q
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Factorized Distributions

A common way to restrict q is to partition Z into 

disjoint sets so that q factorizes over the sets: 

This is the only assumption about q! 

Idea: Optimize        by optimizing wrt. each of the 

factors of q in turn. Setting                  we have  

26

q(Z) =
MY

i=1

qi(Zi)

L(q)
qi(Zi) = qi

L(q) =
Z Y

i

qi

 
log p(X,Z)�

X

i

log qi

!
dZ
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Mean Field Theory

This results in: 

where 

Thus, we have  

I.e., maximizing the lower bound is equivalent to 
minimizing the KL-divergence of a single factor 
and a distribution that can be expressed in terms 
of an expectation:

27

L(q) =
Z

qj log p̃(X,Zj)dZj �
Z

qj log qjdZj + const

L(q) = �KL(qjkp̃(X,Zj))

log p̃(X,Zj) = Ei 6=j [log p(X,Z)] + const

Ei 6=j [log p(X,Z)] =

Z
log p(X,Z)

Y

i 6=j

qidZi

+const

� j

� j

� j
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Mean Field Theory

Therefore, the optimal solution in general is 

In words: the log of the optimal solution for a  
factor    is obtained by taking the expectation with 
respect to all other factors of the log-joint proba-
bility of all observed and unobserved variables  

The constant term is the normalizer and can be 
computed by taking the exponential and 
marginalizing over  

This is not always necessary.

28

log q⇤j (Zj) = Ei 6=j [log p(X,Z)] + const

Zj

qj

� j
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Variational Mixture of Gaussians

• Again, we have observed data 
and latent variables 

• Furthermore we have 

• We introduce priors for all parameters, e.g.

29

X = {x1, . . . ,xN}
Z = {z1, . . . , zN}

p(Z | ⇡) =
NY

n=1

KY

k=1

⇡znk
k p(X | Z,µ,⇤) =

NY

n=1

KY

k=1

N (xn | µk,⇤
�1)znk

p(⇡) = Dir(⇡ | ↵0)

p(µ,⇤) =
KY

k=1

N (µk | m0, (�0⇤k)
�1)W(⇤k | W0, ⌫0)
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Variational Mixture of Gaussians

• The joint probability is then: 

• We consider a distribution q so that 

• Using our general result: 

• Plugging in:

30

p(X,Z,⇡,µ,⇤) = p(X | Z,µ,⇤)p(Z | ⇡)p(⇡)p(µ | ⇤)p(⇤)

q(Z,⇡,µ,⇤) = q(Z)q(⇡,µ,⇤)

log q⇤(Z) = E⇡,µ,⇤[log p(X,Z,⇡,µ,⇤)] + const

log q⇤(Z) = E⇡[log p(Z | ⇡)] + Eµ,⇤[log p(X | Z,µ,⇤)] + const
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Variational Mixture of Gaussians

• The joint probability is then: 

• We consider a distribution q so that 

• Using our general result: 

• Plugging in: 

• From this we can show that: 

31

p(X,Z,⇡,µ,⇤) = p(X | Z,µ,⇤)p(Z | ⇡)p(⇡)p(µ | ⇤)p(⇤)

q(Z,⇡,µ,⇤) = q(Z)q(⇡,µ,⇤)

log q⇤(Z) = E⇡,µ,⇤[log p(X,Z,⇡,µ,⇤)] + const

log q⇤(Z) = E⇡[log p(Z | ⇡)] + Eµ,⇤[log p(X | Z,µ,⇤)] + const

q⇤(Z) =
NY

n=1

KY

k=1

rznk
nk
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Variational Mixture of Gaussians

This means: the optimal solution to the factor 

has the same functional form as the prior of Z.  

It turns out, this is true for all factors. 

However: the factors q depend on moments 
computed with respect to the other variables, i.e. 
the computation has to be done iteratively. 

This results again in an EM-style algorithm, with 
the difference, that here we use conjugate priors 
for all parameters. This reduces overfitting.
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q(Z)
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Example: Clustering
• 6 Gaussians 

• After convergence, 
only two compo-
nents left 

• Complexity is tra-
ded off with data 
fitting 

• This behaviour 
depends on a 
parameter of the 
Dirichlet prior
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