Visual Navigation for Flying Robots Computer Vision Group
D. Cremers, V. Usenko, R. Maier, G. Kuschk Department of Informatics
Winter Semester 2015/2016 Technical University of Munich

Exercise Sheet 3
Topic: Robot State Estimation and Control

Submission deadline: Sunday, 29.11.2015, 23:59
Hand-in via email to visnav15Qvision.in.tum.de

General Notice

The exercises should be done in teams of two to three students. Each student in a
team must be able to present the solution to the tutors during the exercise sessions
on a lab PC in room 02.05.014. The presentations and solutions will be graded
and will count for the final grade of the lab course. If you have not yet done so,
please register yourself together with your team members on the team list in room
02.05.14.

We will use ROS Indigo on Ubuntu 14.04 in this lab course. It is already installed on
the lab computers. If you want to use your own laptop, you will need to install these
versions of Ubuntu and ROS. Please read the ROS and OpenCV documentation for
further reference.

Introduction

The goal of this exercise is to acquire practical experience with controlling a flying
robot in simulator. You will estimate the robot position using IMU and 6D pose
sensor and write a simple PID controller to make the robot hover on spot and resist
external disturbances.

Exercise 1:
Download the code sample for this exercise provided on the course website:
e https://vision.cs.tum.edu/teaching/ws2015/visnav_ws2015/slides

To get you started, it contains a flying robot simulator and a solution skeleton code.

In this exercise you will implement a position PID controller for the flying robot
assuming the ground truth pose of the robot’s center of mass is available.

(a) Get familiar with simulator and skeleton code of the exercise. Launch the
simulator by running the following command:

roslaunch euroc_simulation_server ex3_settingl.launch

Launch the exercise solution in a different terminal:


https://vision.cs.tum.edu/teaching/ws2015/visnav_ws2015/slides

roslaunch ex3_solution ex3.launch

Verify that launching solution unpauses the simulator and it starts publishing
messages. What messages does the simulator publish? What are the frequen-
cies of these messages?

Inspect uav_controller.hpp class in the solution source code. In the constructor
this class initializes some constants, such as gravity, robot mass, noise charac-
teristics of the sensor. After that it initializes publishers and subscribers and
unpauses the simulator. The groundTruthPoseCallback function receives the
ground truth pose from the simulator, computes velocity and stores pose and
velocity in the class variables. The getPoseAndVelocity function returns cur-
rent estimate of pose and velocity. This function will be used later to switch
easily between ground truth measurements and filter output.

Fill the computeDesiredForce function with the code to compute desired force
using the PID controller for hovering at (0,0,1) with zero velocity. Desired
force can be computed using the following formula:

T = kp(xd — .CC) + kd(ﬂfd — J?) + kl /(l’d — .T})dt,

where x4 and 24 are desired position and velocity, x and & are current position
and velocity and k,, kq, k; are proportional, differential and integral gains of
the PID controller.

The simulator provides a low-level controller for the robot that expects com-
mands consisting of desired roll, pitch angles, thrust value and yaw rate, and
executes motor controler to maintain these desired values. Fill computeCom-
mandFromForce function with the code to compute desired roll, pitch angles
and thrust. For this exercise you can set the yaw rate to zero. To obtain roll
pitch and thrust you can use the following equations:

1

¢a = —(Z18in) — Ty cosv),
g
1 . .

04 = — (%1 cos) + Fosinv)),
g

Td :i'zg—i—mg,

where ¢4 is desired roll angle, 8, desired pitch angle, T; desired thrust and
current yaw angle.

Write a sendControlSignal function that will obtain a current pose and velocity
estimate from getPoseAndVelocity function, compute desired force with com-
puteDesiredForce function, transform it into the message with computeCom-
mandFromForce and publish it.

Publish the control message with the rate of the most high frequency sensor.
You can, for example, call the sendControlSignal in the end of IMU callback.



(g) Test the controller in different settings (ex3_settingl.launch, ex3_setting2.launch,
ex3_setting3.launch). In the first setting no external forces are applied to the
robot, in setting 2 at 40s second of the simulation a constant wind starts
blowing and in setting 3 the wind gust blows just for several seconds and then
stops. Tune the PID controller such that the robot maintains a stable flight
in all those settings.

Exercise 2:

In this exercise you will implement a UKF filter that will fuse noisy measurements
from the sensors running at different frequencies to get a reliable estimate of the
robot state. The simulator will provide you messages from two sensors: IMU that
is mounted approximately in the center of mass and provides high-frequency mea-
surements that are subject to Gaussian noise and have a constant bias; Generic 6D
pose sensor which is mounted with some offset from the center of mass, provides
low-frequency measurements that are subject to Gaussian noise.

This implementation of the UKF is based on the paper by C. Hertzberg et al.,
“Integrating Generic Sensor Fusion Algorithms with Sound State Representations
through Encapsulation of Manifolds“, which you can find here: http://arxiv.org/
pdf/1107.1119.pdf

(a) Inspect se3ukf.hpp class in the solution source code. In particular have a look
at compute_sigma_points, compute_mean and compute_mean_and_covariance
functions. The first of them computes sigma points from the current mean
and covariance, the other two perform reverse operation. They compute new
mean and covariance from current sigma points.

(b) Implement predict function that computes the predicted state distribution
from the current state distribution and IMU measurements. To do that you
should first compute sigma points of the current state. Then, for each of the
sigma points apply IMU motion model, compute new mean and covariance
from the transformed sigma points. Assuming the IMU is located close to the
center of mass you can use the following IMU model:

Per1 = P + VAL,
Vi1 = U + (Re(a — bat) — g)At,
Rt+1 = Rt exp((w - bwt)At)a

where p is position, R € SO(3) is orientation and v is velocity of the IMU
expressed in the world coordinate frame; a and w represent accelerometer and
gyroscope measurements, and b, and b, represent their biases accordingly.

(c) Fill the measurePose function to apply 6D measurements to the filter.


http://arxiv.org/pdf/1107.1119.pdf
http://arxiv.org/pdf/1107.1119.pdf

(d) Add UKF filter to the UAVController class. Initialize it with provided initial
pose and covariance. Fill imuCallback and poselCallback to fuse the sensor
measurements using the UKF. Please note that the coordinate frame of the
6D pose sensor is not the same as the IMU coordinate frame, so you should
first transform the measurements to the IMU frame using the transformation
T_imu_cam that is provided in the UAVController class.

(e) Change the getPoseAndVelocity function to provide the pose and velocity
estimates from UKF when use_ground_thruth_data variable is set to false.

(f) Test your controller from the Exercise 1 with the UKF state estimation instead
of ground truth pose. Verify that it works in different settings. What difference
do you observe compared to the controller that works with ground truth?

(g) Verify that your controller now works without ground truth pose. For that
you can launch the simulator as follows:

roslaunch euroc_simulation_server ex3_settingl.launch
enable_ground_truth:=false

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to
the questions on the exercise sheet and a ZIP file containing the source code that
you used to solve the given problems. Note all names of your team members in the
PDF file. Make sure that your ZIP file contains all files necessary to compile and
run your code, but it should not contain any build files or binaries. Please submit
your solution via email to visnavi5@vision.in.tum.de.



