Variational Methods for Computer Vision: Exercise Sheet 6

Exercise: 02 December 2015

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $L: X \rightarrow Y$ be a linear operator and X, Y be finite dimensional vector spaces with $\operatorname{dim} X=$ n and $\operatorname{dim} Y=m$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{m}\right\}$ be the bases for X and respectively for Y. Show that the operator L can be represented by an $m \times n$ matrix M, hence:

$$
L(u)=M u, \quad \forall u \in X
$$

2. Calculate the Euler-Lagrange equation of the following energy functional

$$
E(u)=\int_{\Omega} \frac{\lambda}{2}((k * u)(x)-f(x))^{2}+|\nabla u(x)| \mathrm{dx}
$$

where $\Omega \subset \mathbb{R}^{2}$ represents the image domain, $u: \Omega \rightarrow \mathbb{R}$ denotes the optimization variable, $f: \Omega \rightarrow \mathbb{R}$ stands for the input image and $k: \Omega \rightarrow \mathbb{R}$ denotes a convolution kernel (not necessarily symmetrical).

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Finish the exercises from the previous sheet.
2. In the first theoretical exercise we showed that every linear operation on a finite dimensional space can be represented as a matrix vector multiplication. Since the convolution operation is linear its possible to represent it as such. Write a script that implements convolution with a Gaussian kernel as a sparse matrix-vector multiplication.

Matlab-Tutorials:

```
http://www.math.utah.edu/lab/ms/matlab/matlab.html
http://www.math.ufl.edu/help/matlab-tutorial/
http://www.glue.umd.edu/~nsw/ench250/matlab.htm
```

