Variational Methods for Computer Vision: Solution Sheet 1

Part I: Theory

1. (a) We check the individual conditions:

- $x=y \Rightarrow d(x, y)=0$ follows directly. Assume $\langle x-y, x-y\rangle=0$ and $x \neq y$. Then we have $\langle z, z\rangle=0$ for some $z=x-y \neq 0$.
- Symmetry: $d(x, y)=\sqrt{\langle x-y, x-y\rangle}=\sqrt{\langle y-x, y-x\rangle}=d(y, x)$
- For subadditivity, let us start with the following:

$$
\begin{aligned}
\|x+y\|_{2}^{2} & :=\langle x+y, x+y\rangle=\langle x+y, x+y\rangle \\
& =\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2} \\
& =(\|x\|+\|y\|)^{2}=(\|x\|+\|y\|)^{2} .
\end{aligned}
$$

This implies $\|x+y\| \leq\|x\|+\|y\|$. Now we have

$$
\begin{aligned}
d(x, y) & =\|x-y\|=\|x-z+z-y\| \\
& \leq\|x-z\|+\|z-y\|=d(x, z)+d(z, y) .
\end{aligned}
$$

(b) We verify all four conditions:

- Summands are all positive due to the absolute value $\Rightarrow d(x, y) \geq 0$.
- $x=y \Rightarrow d(x, y)=0$ follows directly by substitution. For the other direction we assume $d(x, y)=0$ which implies $\left|x_{i}-y_{i}\right|=0$ for all $1 \leq i \leq n$, which in turn implies $x_{i}=y_{i}$.
- Symmetry: Follows directly from symmetry of absolute value function.
- Subadditivity: Follows directly from the basic triangle inequality $(|x+y| \leq|x|+|y|)$:

$$
\left|x_{i}-z_{i}\right|=\left|x_{i}-y_{i}+y_{i}-z_{i}\right| \leq\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right| .
$$

\Rightarrow We have verified that the Manhattan (or Taxicab) distance is a metric. Note that the Manhattan distance is induced by the standard ℓ^{1} norm on $\mathbb{R}^{n}: d(x, y)=\|x-y\|_{1}$.
(c) $D(x, y)=\left|\left(x^{2}-y^{2}\right)\right|$ is no metric, as $D(x,-x)=\left|\left(x^{2}-\left(-x^{2}\right)\right)\right|=\left|\left(x^{2}-x^{2}\right)\right|=0$
2. We start with the definition of the Fourier transform:

$$
\begin{aligned}
\mathcal{F}\{f * g\}(\nu) & =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y\right) e^{-2 \pi i x \nu} \mathrm{~d} x \\
& =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(x-y) e^{-2 \pi i x \nu} \mathrm{~d} x\right) \mathrm{d} y .
\end{aligned}
$$

Introducing the substitution $z=x-y, \mathrm{~d} z=\mathrm{d} x$ we arrive at

$$
\begin{aligned}
\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(x-y) e^{-2 \pi i x \nu} \mathrm{~d} x\right) \mathrm{d} y & =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(z) e^{-2 \pi i(z+y) \nu} \mathrm{d} z\right) \mathrm{d} y \\
& =\int_{\mathbb{R}} f(y) e^{-2 \pi i y \nu} \int_{\mathbb{R}} g(z) e^{-2 \pi i z \nu} \mathrm{~d} z \mathrm{~d} y \\
& =\underbrace{\int_{\mathbb{R}} f(y) e^{-2 \pi i y \nu} \mathrm{~d} y}_{=: \mathcal{F}\{f\}(\nu)} \underbrace{\int_{\mathbb{R}} g(z) e^{-2 \pi i z \nu} \mathrm{~d} z}_{=: \mathcal{F}\{g\}(\nu)} .
\end{aligned}
$$

As the Fourier transform can be implemented to run in $\mathcal{O}(n \log n)$ time, convolutions can be computed efficiently by exploiting this property:

$$
f * g=\mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\}
$$

