Variational Methods for Computer Vision: Solution Sheet 6

Exercise: 09 December 2015

Part I: Theory

1. (a)

$$
\begin{aligned}
\int_{Q} v_{x}(x, y)-u_{y}(x, y) \mathrm{dxdy} & =\int_{0}^{1} \int_{0}^{1} v_{x}(x, y)-u_{y}(x, y) \mathrm{dxdy} \\
& =\int_{0}^{1} \int_{0}^{1} v_{x}(x, y) \mathrm{dxdy}-\int_{0}^{1} \int_{0}^{1} u_{y}(x, y) \mathrm{dydx} \\
& =\left.\int_{0}^{1} v(x, y)\right|_{x=0} ^{x=1} \mathrm{dy}-\left.\int_{0}^{1} v(x, y)\right|_{y=0} ^{y=1} \mathrm{dx} \\
& =\int_{0}^{1} v(1, y)-v(0, y) \mathrm{dy}-\int_{0}^{1} v(x, 1)-v(x, 0) \mathrm{dx} \\
& =\int_{0}^{1} v(1, y) \mathrm{dy}-\underbrace{\int_{0}^{1} v(0, y) \mathrm{dy}}_{\int_{a} v(x, y) \mathrm{dy}}-\underbrace{\int_{0}^{1} v(x, 1) \mathrm{dx}}_{\int_{c} v(x, y) \mathrm{dy}}+\underbrace{\int_{0}^{1} v(x, 0) \mathrm{dx}}_{\int_{b} u(x, y) \mathrm{dx}} \\
& =\underbrace{\int_{0}^{1} v(1, y) \mathrm{dy}}_{\int_{d} v(x, y) \mathrm{dx}}+\int_{\partial Q}^{\int_{1}^{0} v(0, y) \mathrm{dy}} v \mathrm{\int}_{0}^{\int_{0}^{1} v(x, 1) \mathrm{dx}} v(x, 0) \mathrm{dx} \\
&
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{Q_{1}} v_{x}(x, y)-u_{y}(x, y) \mathrm{dxdy}+\int_{Q_{2}} v_{x}(x, y)-u_{y}(x, y) \mathrm{dxdy} \\
= & \int_{a} v(x, y) \mathrm{dy} \int_{c} v(x, y) \mathrm{dy}+\int_{b} v(x, y) \mathrm{dx}+\int_{d} v(x, y) \mathrm{dx} \\
- & \int_{a} v(x, y) \mathrm{dy}+\int_{e} v(x, y) \mathrm{dx}+\int_{f} v(x, y) \mathrm{dy}+\int_{g} v(x, y) \mathrm{dx}
\end{aligned}
$$

2. (a) The curvature κ of a circle with radius r is $\kappa=\frac{1}{r}$. We can use this fact in calculating the Euler-Lagrange equations for the 2 different cases.
$r>1$:

$$
\begin{aligned}
& u_{\text {outer }}=0 \\
& u_{\text {inner }}=\frac{\pi}{\pi r^{2}}=\frac{1}{r^{2}}
\end{aligned}
$$

This leads to following Euler-Lagrange equation:

$$
\begin{aligned}
& \left(I-u_{\text {outer }}\right)^{2}-\left(I-u_{\text {inner }}\right)^{2}-\nu \kappa \\
= & (0-0)^{2}-\left(0-\frac{1}{r^{2}}\right)^{2}-\frac{\nu}{r} \\
= & -\frac{1}{r^{2}}-\frac{\nu}{r}
\end{aligned}
$$

$r \leq 1:$

$$
\begin{aligned}
& u_{\mathrm{outer}}=\frac{\pi-\pi r^{2}}{100-\pi r^{2}} \\
& u_{\mathrm{inner}}=1
\end{aligned}
$$

This leads to following Euler-Lagrange equation:

$$
\begin{aligned}
& \left(I-u_{\text {outer }}\right)^{2}-\left(I-u_{\text {inner }}\right)^{2}-\nu \kappa \\
= & \left(1-\frac{\pi-\pi r^{2}}{100-\pi r^{2}}\right)^{2}-0-\frac{\nu}{r} \\
= & \frac{100-\pi r^{2}-\pi-\pi r^{2}}{100-\pi r^{2}}-\frac{\nu}{r} \\
= & \left(\frac{100-\pi}{100-\pi r^{2}}\right)^{2}-\frac{\nu}{r}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \lim _{r \searrow 1}-\frac{1}{r^{2}}-\frac{\nu}{r}=-1-\nu \\
& \lim _{r \nearrow 1}-\frac{100-\pi}{100-\pi r^{2}}-\frac{\nu}{r}=\frac{100-\pi}{100-\pi}-\nu=1-\nu
\end{aligned}
$$

As the limits differ the Gateaux derivative at $r=1$ is not continuous.
$\nu \leq 1$ is a good choice because it ensures that the curve evolves in the right direction for both cases $r>1$ and $r \leq 1$.
$r>1$:

$$
\nu \leq 1 \Rightarrow-\frac{1}{r^{2}}-\frac{\nu}{r}<0
$$

$r \leq 1:$

$$
\nu \leq 1 \Rightarrow\left(\frac{100-\pi}{100-\pi r^{2}}\right)^{2}-\frac{\nu}{r} \geq 0
$$

