
Variational Methods for Computer Vision: Solution Sheet 6

Exercise: 09 December 2015

Part I: Theory
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2. (a) The curvature  of a circle with radius r is  =

1

r

. We can use this fact in calculating the

Euler-Lagrange equations for the 2 different cases.

r > 1:

u

outer

= 0

u

inner

=

⇡

⇡r

2

=

1

r

2

This leads to following Euler-Lagrange equation:
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As the limits differ the Gateaux derivative at r = 1 is not continuous.

⌫  1 is a good choice because it ensures that the curve evolves in the right direction for

both cases r > 1 and r  1.
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