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Introduction

Neural networks are inspired by the biological neurons
The human brain (1010 cells) is the archetype of neural
networks

Most commonly used classifiers in machine learning
Easily adaptable to regression and multi-class problems
Representation learning method
History

Computational model in 1943 [McCulloch and Pitts, 1943]
Backpropagation in 1975 [Werbos, 1974]
Neocognitron in 1980 [Fukushima, 1980]
Convolutional Neural Networks in 1998 [Lecun et al., 1998])
AlexNet in 2012 [Krizhevsky et al., 2012]
VGG-Net in 2014 [Simonyan and Zisserman, 2015]
ResNets: Deep Residual Networks [He et al., 2015]

ResNet-50, ResNet-101, and ResNet-152

Caner Hazırbaş: Intro to Feedforward and Recurrent Neural Networks 4 / 28



Computer Vision Group

Outline
1 Introduction
2 Perceptron

Activation Functions
3 Feedforward Networks

Single-layer Perceptron
Multi-layer Perceptron
Applications of Neural Networks

4 Training Deep Networks
Gradient Descent

Backpropagation
Stochastic Gradient Descent
Other SGD-based Methods

5 Recurrent Neural Networks
Intro to RNNs
RNN extensions
Training RNNs

Caner Hazırbaş: Intro to Feedforward and Recurrent Neural Networks 5 / 28



Computer Vision Group

Perceptron

One-neuron classifier
linear classifier
similar to SVMs
finds a hyperplane
between classes

Computational Model

Neuron scheme
[Gołda, 2005]

φ =

( n∑
i=1

wiui + b
)

y = σ(φ)
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Activation Functions (σ)

Threshold Activation

σ(φ) =

{
0 φ ≤ 0

1 φ > 0

Sigmoid Activation

σ(φ) =
1

1 + exp−φ

Tangent Activation

σ(φ) =
expφ− exp−φ

expφ+ exp−φ
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Activation Functions (σ)

Linear Activation

σ(φ) = φ

Rectified Linear Unit
(reLU)

σ(φ) = max(0, φ)

Parametric reLU

σ(φ) = max(φ, αφ), α < 1

Leaky reLU when α
is fixed

visit for more: https://en.wikipedia.org/wiki/Activation_functionCaner Hazırbaş: Intro to Feedforward and Recurrent Neural Networks 8 / 28

https://en.wikipedia.org/wiki/Activation_function


Computer Vision Group

Outline
1 Introduction
2 Perceptron

Activation Functions
3 Feedforward Networks

Single-layer Perceptron
Multi-layer Perceptron
Applications of Neural Networks

4 Training Deep Networks
Gradient Descent

Backpropagation
Stochastic Gradient Descent
Other SGD-based Methods

5 Recurrent Neural Networks
Intro to RNNs
RNN extensions
Training RNNs

Caner Hazırbaş: Intro to Feedforward and Recurrent Neural Networks 9 / 28



Computer Vision Group

Single-layer Perceptron

Single-layer Perceptron [Gołda, 2005]
multi-class classification
each output neuron is connected to each input neuron:
fully-connected

yj = σ(φj) =

( n∑
i=1

wij ui + bj
)
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Multi-layer Perceptron
Multilayer Perceptron

Stacked layers one after another
One or more hidden layers except input/output layers

yl+1
j = σ(φl

j) =

( n∑
1

wl
ij yli + bl+1

j

)
l > 0 is the layer index, y1i = ui

MNIST Digit Classification with 2-layers neural networks
[Nielsen, 2016]
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Applications of Neural Networks

Classification
[Lecun et al., 1998]

Auto-encoders

http://nghiaho.com/?p=1765

Regression
[Fischer et al., 2015]

Transfer Learning
[Hazirbas et al., 2016]
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Gradient Descent

Minimize a cost function. Let ŷ(u) be the prediction and
y∗(u) be the expected output (ground-truth):

C(w,b) ≡ 1

2N

N∑
j

||ŷ(uj)− y∗(uj)||2

Highly non-convex respect to the parameter set (w,b).
Thus no closed-form solution exist.
Solution: Gradient Descent

Move in the opposite direction of the gradient
Let t be the iteration and η be learning rate, update rule for
all w and b is then

wt+1 = wt −
η

N

N∑
j

∂CUj

∂wt
, bt+1 = bt −

η

N

N∑
j

∂CUj

∂bt
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Backpropagation

Minimize a cost function. Let ŷ(u) be the prediction and
y∗(u) be the expected output (ground-truth):

C(w,b) ≡ 1

2N

N∑
j

||ŷ(uj)− y∗(uj)||2

Highly non-convex respect to the parameter set (w,b).
Thus no closed-form solution exist.
Backpropagation

forward pass all the inputs and compute the loss
propagate back the error through the layers

Take the derivative of the output of a layer w.r.t.its input and
multiply with the error propagated down → chain-rule
Update the parameters of the layer

repeat until convergence, e.g., saturated-loss
→ example derivation: Exercise
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Stochastic Gradient Descent (SGD)
Gradient Descent

intractable for large datasets
high computational expense to compute the cost and
derivatives for the entire dataset
not easily adaptable to ’online’ setting

Solution: SGD
compute the cost and derivatives over a batch of images
mini-batch (m ≪ N) reduces the variance in the parameter
update and can lead to more stable convergence

wt+1 = wt −
η

m

m∑
j

∂CUj

∂wt
, bt+1 = bt −

η

m

m∑
j

∂CUj

∂bt

use momentum for faster convergence

vt → vt+1 = µvt +
η

m

m∑
j

∂CUj

∂wt
, wt → wt+1 = wt + vt+1
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Other SGD-based Methods

Adaptive
Delta (AdaDelta)
Adaptive Gradient
(AdaGrad)
Nesterovs’ Accelerated
Gradient (NAG)

RMSProb
Adaptive Moment
Estimation (ADAM)

Less sensitive to
initial learning rate
and momentum
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Back to Activation Functions

Sigmoid Activation

σ(φ) =
1

1 + exp−φ

Tangent Activation

σ(φ) =
expφ−exp−φ

expφ+exp−φ

Rectified Linear Unit
(reLU)

σ(φ) = max(0, φ)

7 Dying gradients (saturated
activation)

7 Non-zero centered

7 Dying gradients (saturated
activation)

7 Non-zero centered

3 Greatly accelerated
convergence

3 Computationally cheap
7 Can be fragile during training

→ use Leaky-reLU
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Intro to RNNs

Unfolding RNNs:

xt is the input at time t
st = σ(U · xt + W · st−1) hidden state at time t
ot is the output at time t

st → memory
7 long sequences
3 use LSTMs.

source: [Britz, 2015]
for sequential data.
Inputs (and outputs) are
dependent.

e.g.next word in
sentences.

caption generation
by [Vinyals et al., 2015]:
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RNN extensions

Bidirectional RNNs
stacked RNNs.
ot depends both on ot−1 and ot+1

Gated Recurrent Unit
(GRU)
varient of LSTM
update gate as of forget+input gates

Deep (Bidirectional) RNNs
multilayer stacked RNNs.
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RNN extensions

Long Short Term Memory
(LSTMs)

Semantic segmentation
[Byeon et al., 2015]

source: [Olah, 2015]
no vanishing gradient
different activation function
for the hidden state
very efficient in practice
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Back Propagation Through Time (BPTT)

Gradient at each output depends on the current and
previous steps.
Propagate the gradient through time steps and sum up.

as same as unfolding th enetwork and then applying
backpropagation

BPTT has difficulty with local optima on RNNs.
Vanishing gradient problem.

Conclusion: no matter what, use LSTMs 3
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Lets play around...

www.cs.stanford.edu/people/karpathy/convnetjs
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Quiz
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