

Deep Learning for Computer Vision

Lecturer: Dr. Laura Leal-Taixe Tutors: Caner Hazirbas, Philip Häusser

Vladimir Golkov, John Chiotellis and Lingni Ma

Technische Universität München Computer Vision Group

June 21, 2016

- How DL is applied to computer vision problems
- Practical experience with the most successful ML methods
 - Artificial Neural Networks
 - Convolutional Neural Networks
 - Long short-term memory (LSTM)
- Benefits/drawbacks of the methods when applied to concrete, relevant problems
- Practical project experiences
- Presentation skills

How DL is applied to computer vision problems

- Practical experience with the most successful ML methods
 - Artificial Neural Networks
 - Convolutional Neural Networks
 - Long short-term memory (LSTM)
- Benefits/drawbacks of the methods when applied to concrete, relevant problems
- Practical project experiences
- Presentation skills

- How DL is applied to computer vision problems
- Practical experience with the most successful ML methods
 - Artificial Neural Networks
 - Convolutional Neural Networks
 - Long short-term memory (LSTM)
- Benefits/drawbacks of the methods when applied to concrete, relevant problems
- Practical project experiences
- Presentation skills

- How DL is applied to computer vision problems
- Practical experience with the most successful ML methods
 - Artificial Neural Networks
 - Convolutional Neural Networks
 - Long short-term memory (LSTM)
- Benefits/drawbacks of the methods when applied to concrete, relevant problems
- Practical project experiences
- Presentation skills

- How DL is applied to computer vision problems
- Practical experience with the most successful ML methods
 - Artificial Neural Networks
 - Convolutional Neural Networks
 - Long short-term memory (LSTM)
- Benefits/drawbacks of the methods when applied to concrete, relevant problems
- Practical project experiences
- Presentation skills

- How DL is applied to computer vision problems
- Practical experience with the most successful ML methods
 - Artificial Neural Networks
 - Convolutional Neural Networks
 - Long short-term memory (LSTM)
- Benefits/drawbacks of the methods when applied to concrete, relevant problems
- Practical project experiences
- Presentation skills

Course Structure

- Three-week lectures
- One topic will be discussed each week
 - ANN
 - CNN
 - LSTM
- One exercise will be assigned each week, including practical/theoretical questions. Solutions will be discussed in the following week
- One-month practical project
 - 2-3 people per group, supervised by one tutor
 - access to lab computers and discussions with supervisors during class hours

Course Structure

- Three-week lectures
- One topic will be discussed each week
 - ANN
 - CNN
 - LSTM
- One exercise will be assigned each week, including practical/theoretical questions. Solutions will be discussed in the following week
- One-month practical project
 - 2-3 people per group, supervised by one tutor
 - access to lab computers and discussions with supervisors during class hours

Course Structure

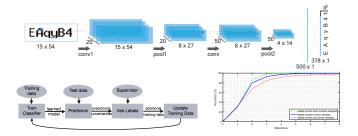
- Three-week lectures
- One topic will be discussed each week
 - ANN
 - CNN
 - LSTM
- One exercise will be assigned each week, including practical/theoretical questions. Solutions will be discussed in the following week
- One-month practical project
 - 2-3 people per group, supervised by one tutor
 - access to lab computers and discussions with supervisors during class hours

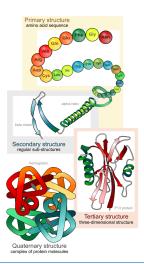
Format of Final Presentation

- 20min presentation, 5min –10min Q&A
- Recommended structure
 - Introduction, problem definition
 - Approaches
 - Experimental results and discussions
 - Conclusions

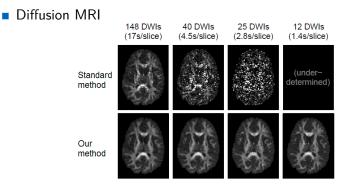

Evaluation Criteria

- Successful fulfillment of all exercises
- Gained expertise in the topics/project
- Quality of the project presentation
- Attendance of classes/exercises is mandatory! In case of sickness, medical attest is required.


FlowNet


Hit.

CAPTCHA Recognition with Active Deep Learning



Biomedicine

Computer Vision Group

Study Materials

 Pattern recognition and machine learning, by Christopher M. Bishop

 Machine learning: a probabilistic perspective, by Kevin P. Murphy

http://www.deeplearningbook.org/ by lan Goodfellow, Yoshua Bengio and Aaron Courville

Lecturer: Dr. Laura Leal-Taixe Tutors: Caner Hazirbas, Philip Häusser Vladimir Golkov, John Chiotellis a