6. Clustering

Motivation

- Supervised learning is good for interaction with humans, but labels from a supervisor are sometimes hard to obtain
- Clustering is unsupervised learning, i.e. it tries to learn only from the data
- Main idea: find a similarity measure and group similar data objects together
- Clustering is a very old research field, many approaches have been suggested
- Main problem in most methods: how to find a good number of clusters

Categories of Learning

Learning

Unsupervised Learning

clustering, density estimation

Supervised Learning

learning from a training data set, inference on the test data

Reinforcement Learning

no supervision, but a reward function

In unsupervised learning, there is no ground truth information given.

Most Unsupervised Learning methods are based on **Clustering**.

- Given: data set $\{x_1, \dots, x_N\}$, number of clusters K
- Goal: find cluster centers $\{\mu_1,\ldots,\mu_K\}$ so that

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

is minimal, where $r_{nk}=1$ if \mathbf{x}_n is assigned to $\boldsymbol{\mu}_k$

- Idea: compute r_{nk} and μ_k iteratively
- Start with some values for the cluster centers
- Find optimal assignments r_{nk}
- Update cluster centers using these assignments
- Repeat until assignments or centers don't change

Initialize cluster means: $\{oldsymbol{\mu}_1,\dots,oldsymbol{\mu}_K\}$

Find optimal assignments:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\| \\ 0 & \text{otherwise} \end{cases}$$

Find new optimal means:

$$\frac{\partial J}{\partial \boldsymbol{\mu}_k} = 2\sum_{n=1}^N r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) \stackrel{!}{=} 0$$

$$\Rightarrow \boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$$

Find new optimal assignments:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\| \\ 0 & \text{otherwise} \end{cases}$$

Iterate these steps until means and assignments do not change any more

2D Example

- Real data set
- Random initialization

 Magenta line is "decision boundary"

The Cost Function

- After every step the cost function J is minimized
- Blue steps: update assignments
- Red steps: update means
- Convergence after 4 rounds

K-means for Segmentation

K = 2

K = 3

K = 10

Original image

K-Means: Additional Remarks

- K-means converges always, but the minimum is not guaranteed to be a global one
- There is an **online** version of K-means
 - After each addition of \mathbf{x}_n , the nearest center $\boldsymbol{\mu}_k$ is updated:

$$\boldsymbol{\mu}_k^{\mathrm{new}} = \boldsymbol{\mu}_k^{\mathrm{old}} + \eta_n(\mathbf{x}_n - \boldsymbol{\mu}_k^{\mathrm{old}})$$

- The K-medoid variant:
 - Replace the Euclidean distance by a general measure
 V.

$$\tilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_n, \boldsymbol{\mu}_k)$$

Mixtures of Gaussians

- Assume that the data consists of K clusters
- The data within each cluster is Gaussian
- For any data point \mathbf{x} we introduce a K-dimensional binary random variable \mathbf{z} so that:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \underbrace{p(z_k = 1)}_{=:\pi_k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

$$z_k \in \{0, 1\}, \quad \sum_{k=1}^K z_k = 1$$

A Simple Example

- Mixture of three Gaussians with mixing coefficients
- Left: all three Gaussians as contour plot
- Right: samples from the mixture model, the red component has the most samples

Parameter Estimation

• From a given set of training data $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ we want to find parameters $(\pi_{1,\dots,K}, \boldsymbol{\mu}_{1,\dots,K}, \Sigma_{1,\dots,K})$ so that the likelihood is maximized (MLE):

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \pi_{1,\dots,K}, \boldsymbol{\mu}_{1,\dots,K}, \Sigma_{1,\dots,K}) = \prod_{n=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \Sigma_k)$$

or, applying the logarithm:

$$\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 However: this is not as easy as maximumlikelihood for single Gaussians!

Problems with MLE for Gaussian Mixtures

- Assume that for one k the mean μ_k is exactly at a data point \mathbf{x}_n
 - For simplicity: assume that $\Sigma_k = \sigma_k^2 I$
 - Then: $\mathcal{N}(\mathbf{x}_n \mid \mathbf{x}_n, \sigma_k^2 I) = \frac{1}{\sqrt{2\pi}\sigma_k^D}$
 - This means that the overall log-likelihood can be maximized arbitrarily by letting $\sigma_k \to 0$ (overfitting)
- Another problem is the identifiability:
 - The order of the Gaussians is not fixed, therefore:
 - There are K! equivalent solutions to the MLE problem

Overfitting with MLE for Gaussian Mixtures

- One Gaussian fits exactly to one data point
- It has a very small variance, i.e. contributes strongly to the overall likelihood
- In standard MLE, there is no way to avoid this!

Expectation-Maximization

- EM is an elegant and powerful method for MLE problems with latent variables
- Main idea: model parameters and latent variables are estimated iteratively, where average over the latent variables (expectation)
- A typical example application of EM is the Gaussian Mixture model (GMM)
- However, EM has many other applications
- First, we consider EM for GMMs

• First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n) \qquad z_{nk} \in \{0, 1\}$$
$$\sum_{k} z_{nk} = 1$$

• First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n)$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

• First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n)$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

ullet Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n)$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

• Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:
$$\mu_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n}{\sum_{n=1}^N \gamma(z_{nk})}$$

We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk})(\mathbf{x}_n - \boldsymbol{\mu}_k)(\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)}{\partial \pi_k} \stackrel{!}{=} \mathbf{0}$$
 where: $\sum_{k=1}^K \pi_k = 1$

We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk})(\mathbf{x}_n - \boldsymbol{\mu}_k)(\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)}{\partial \pi_k} \stackrel{!}{=} \mathbf{0}$$
 where: $\sum_{k=1}^K \pi_k = 1$

25

and the result is: $\pi_k = \frac{1}{N} \sum_{i=1}^{N} \gamma(z_{nk})$

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$

Algorithm Summary

- 1.Initialize means μ_k covariance matrices Σ_k and mixing coefficients π_k
- 2.Compute the initial log-likelihood $\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- 3. E-Step. Compute the responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

4. M-Step. Update the parameters:

$$\mu_k^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \Sigma_k^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \pi_k^{\text{new}} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$

5. Compute log-likelihood; if not converged go to 3.

The Same Example Again

Observations

- Compared to K-means, points can now belong to both clusters (soft assignment)
- In addition to the cluster center, a covariance is estimated by EM
- Initialization is the same as used for K-means
- Number of iterations needed for EM is much higher
- Also: each cycle requires much more computation
- Therefore: start with K-means and run EM on the result of K-means (covariances can be initialized to the sample covariances of K-means)
- EM only finds a local maximum of the likelihood!

- Consider an undirected graph that connects all data points
- The edge weights are the similarities ("closeness")
- We define the weighted degree d_i of a node as the sum of all outgoing edges

W =

$$d_i = \sum_{j=1}^{N} w_{ij}$$

$$D =$$

29

• The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvalue 0

• The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite

• The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite
- With these properties we can show:

Theorem: The set of eigenvectors of L with eigenvalue 0 is spanned by the indicator vectors $1_{A_1}, \ldots, 1_{A_K}$, where A_k are the K connected components of the graph.

The Algorithm

- Input: Similarity matrix W
- Compute L = D W
- Compute the eigenvectors that correspond to the K smallest eigenvalues
- Stack these vectors as columns in a matrix U
- Treat each row of U as a K-dim data point
- Cluster the N rows with K-means clustering
- The indices of the rows that correspond to the resulting clusters are those of the original data points.

An Example

- Spectral clustering can handle complex problems such as this one
- The complexity of the algorithm is O(N³), because it has to solve an eigenvector problem
- But there are efficient variants of the algorithm

Further Remarks

- To account for nodes that are highly connected, we can use a normalized version of the graph Laplacian
- Two different methods exist:
 - $L_{rw} = D^{-1}L = I D^{-1}W$
 - $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- These have similar eigenspaces than the original Laplacian L
- Clustering results tend to be better than with the unnormalized Laplacian

Summary

- Several Clustering methods exist:
 - K-means clustering and Expectation-Maximization, both based on Gaussian Mixture Models
 - K-means uses hard assignments, whereas EM uses soft assignments and estimates also the covariances
 - Spectral clustering uses the graph Laplacian and performs an eigenvector analysis
- Major Problem:
 - most clustering algorithms require the number of clusters to be given