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Motivation

• Supervised learning is good for interaction with 
humans, but labels from a supervisor are 
sometimes hard to obtain 

• Clustering is unsupervised learning, i.e. it tries to 
learn only from the data 

• Main idea: find a similarity measure and group 
similar data objects together 

• Clustering is a very old research field, many 
approaches have been suggested 

• Main problem in most methods: how to find a 
good number of clusters
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation
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learning from a training 
data set, inference on 

the test data

In unsupervised learning, there is no ground truth 
information given. 

Most Unsupervised Learning methods are based on 
Clustering.
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K-means Clustering

• Given: data set                    , number of clusters K 
• Goal: find cluster centers                      so that  
 
 
 
is minimal, where             if      is assigned to       

• Idea: compute       and      iteratively 

• Start with some values for the cluster centers 

• Find optimal assignments 

• Update cluster centers using these assignments 

• Repeat until assignments or centers don’t change 
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J =
NX

n=1

KX

k=1

rnkkxn � µkk

{x1, . . . ,xN}

{µ1, . . . ,µK}

rnk = 1 xn µk

rnk µk

rnk
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K-means Clustering
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{µ1, . . . ,µK}Initialize cluster means:
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

K-means Clustering
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Find optimal assignments:
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@J

@µk

= 2
NX

n=1

rnk(xn � µk)
!
= 0

) µk =

PN
n=1 rnkxnPN
n=1 rnk

K-means Clustering
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Find new optimal means:
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K-means Clustering
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

Find new optimal assignments:
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K-means Clustering
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Iterate these steps until means and 
assignments do not change any more
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2D Example
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• Real data set 
• Random initialization

• Magenta line is “decision 
boundary”
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The Cost Function

• After every step the cost function J is minimized 

• Blue steps: update assignments 

• Red steps: update means 

• Convergence after 4 rounds
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K-means for Segmentation
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• K-means converges always, but the minimum is 
not guaranteed to be a global one 

• There is an online version of K-means  

•After each addition of xn, the nearest center μk is 

updated: 

• The K-medoid variant: 

•Replace the Euclidean distance by a general measure 
V.

K-Means: Additional Remarks
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µnew

k = µold

k + ⌘n(xn � µold

k )

J̃ =
NX

n=1

KX

k=1

rnkV(xn,µk)
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Mixtures of Gaussians

• Assume that the data consists of K clusters 

• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 

binary random variable z so that:  
 
 
 
where  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zk 2 {0, 1},
KX

k=1

zk = 1

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)
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A Simple Example

• Mixture of three Gaussians with mixing coefficients 

• Left: all three Gaussians as contour plot 

• Right: samples from the mixture model, the red 
component has the most samples
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Parameter Estimation

• From a given set of training data                    we 
want to find parameters 
so that the likelihood is maximized (MLE):  
 
 
 
or, applying the logarithm:  

• However: this is not as easy as maximum-
likelihood for single Gaussians!
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{x1, . . . ,xN}
(⇡1,...,K ,µ1,...,K ,⌃1,...,K)

p(x1, . . . ,xN | ⇡1,...,K ,µ1,...,K ,⌃1,...,K) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

log p(X | ⇡,µ,⌃) =
NX

n=1

log

KX

k=1

⇡kN (xn | µk,⌃k)
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Problems with MLE for Gaussian Mixtures

• Assume that for one k the mean     is exactly at a 
data point 

•For simplicity: assume that  

•Then:   

•This means that the overall log-likelihood can be 
maximized arbitrarily by letting              (overfitting)            

• Another problem is the identifiability: 

•The order of the Gaussians is not fixed, therefore: 

•There are K! equivalent solutions to the MLE problem
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µk

xn

⌃k = �2
kI

�k ! 0

N (xn | xn,�
2
kI) =

1p
2⇡�D

k
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Overfitting with MLE for Gaussian Mixtures

• One Gaussian fits exactly to one data point 

• It has a very small variance, i.e. contributes 
strongly to the overall likelihood 

• In standard MLE, there is no way to avoid this!
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Expectation-Maximization

• EM is an elegant and powerful method for MLE 
problems with latent variables 

• Main idea: model parameters and latent variables 
are estimated iteratively, where average over the 
latent variables (expectation) 

• A typical example application of EM is the 
Gaussian Mixture model (GMM) 

• However, EM has many other applications 

• First, we consider EM for GMMs
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Expectation-Maximization for GMM

• First, we define the responsibilities:

20

�(znk) = p(znk = 1 | xn) znk 2 {0, 1}
X

k

znk = 1
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Expectation-Maximization for GMM

• First, we define the responsibilities:
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�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     : 
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�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     :  
 
 
 
and we obtain: 
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�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0

µk =

PN
n=1 �(znk)xnPN
n=1 �(znk)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where: 
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
n=1 �(znk)(xn � µk)(xn � µk)

T

PN
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⇡k
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where:  
 
and the result is:  
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@log p(X | ⇡,µ,⌃)
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Algorithm Summary

1.Initialize means     covariance matrices     and 
mixing coefficients 

2.Compute the initial log-likelihood 

3. E-Step. Compute the responsibilities:  
 
 

4. M-Step. Update the parameters: 
 

5.Compute log-likelihood; if not converged go to 3.
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=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

�(znk)

log p(X | ⇡,µ,⌃)

µk ⌃k

⇡k

µnew
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PN
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⌃new
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PN
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PN
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N
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n=1
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The Same Example Again
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Observations

• Compared to K-means, points can now belong to 
both clusters (soft assignment) 

• In addition to the cluster center, a covariance is 
estimated by EM 

• Initialization is the same as used for K-means 

• Number of iterations needed for EM is much higher 

• Also: each cycle requires much more computation 

• Therefore: start with K-means and run EM on the 
result of K-means (covariances can be initialized to 
the sample covariances of K-means) 

• EM only finds a local maximum of the likelihood!
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di =
NX

j=1

wij

D =

Spectral Clustering

• Consider an undirected graph that connects all 
data points 

• The edge weights are the similarities (“closeness”) 

• We define the weighted degree    of a node as the 
sum of all outgoing edges
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W =

di

d1
d2
d3
d4
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvalue 0

30

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite

31

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite 

• With these properties we can show: 

Theorem: The set of eigenvectors of L with 
eigenvalue 0 is spanned by the indicator vectors  
                  , where       are the K connected 
components of the graph.
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L = D �W

1A1 , . . . ,1AK Ak
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The Algorithm

• Input: Similarity matrix W 

• Compute L = D - W 

• Compute the eigenvectors that correspond to the 
K smallest eigenvalues 

• Stack these vectors as columns in a matrix U 

• Treat each row of U as a K-dim data point 

• Cluster the N rows with K-means clustering 

• The indices of the rows that correspond to the 
resulting clusters are those of the original data 
points.

33



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

An Example

• Spectral clustering can handle complex problems 
such as this one 

• The complexity of the algorithm is O(N ), because 
it has to solve an eigenvector problem 

• But there are efficient variants of the algorithm
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Further Remarks

• To account for nodes that are highly connected, 
we can use a normalized version of the graph 
Laplacian 

• Two different methods exist: 

•    

•    

• These have similar eigenspaces than the original 
Laplacian L 

• Clustering results tend to be better than with the 
unnormalized Laplacian
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Lrw = D�1L = I �D�1W

Lsym = D� 1
2LD� 1

2 = I �D� 1
2WD� 1

2



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Summary

• Several Clustering methods exist: 

•K-means clustering and Expectation-Maximization, 
both based on Gaussian Mixture Models  

•K-means uses hard assignments, whereas EM uses 
soft assignments and estimates also the covariances 

•Spectral clustering uses the graph Laplacian and 
performs an eigenvector analysis 

• Major Problem:  

•most clustering algorithms require the number of 
clusters to be given
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