

15. Clustering II

Motivation

- When we talked about clustering, we discussed two main approaches: k-means and Expectation-Maximization
- Both algorithms required the number K of clusters
- To find a good K, one could try different values for K and decide which is the best on some criterion Questions:
 - is there a more sound (i.e. statistically principled) way to find the number of clusters?
 - can we do clustering and estimating of K online?

Motivation

- When we talked about clustering, we discussed two main approaches: k-means and Expectation-Maximization
- Both algorithms required the number K of clusters
- To find a good K, one could try different values for K and decide which is the best on some criterion Questions:
 - is there a more sound (i.e. statistically principled) way to find the number of clusters?
 - can we do clustering and estimating of K online?

First step: derive a new algorithm for given (fixed) K

Gibbs Sampling (Rep.)

- Initialize $\{z_i : i = 1, ..., M\}$
- For $\tau = 1, ..., T$
 - Sample $z_1^{(\tau+1)} \sim p(z_1 \mid z_2^{(\tau)}, \dots, z_M^{(\tau)})$
 - Sample $z_2^{(\tau+1)} \sim p(z_2 \mid z_1^{(\tau+1)}, \dots, z_M^{(\tau)})$
 - •
 - Sample $z_M^{(\tau+1)} \sim p(z_M \mid z_1^{(\tau+1)}, \dots, z_{M-1}^{(\tau+1)})$

Idea: sample from the full conditional

This can be obtained, e.g. from the Markov blanket in graphical models.

The full posterior of the Gaussian Mixture Model is

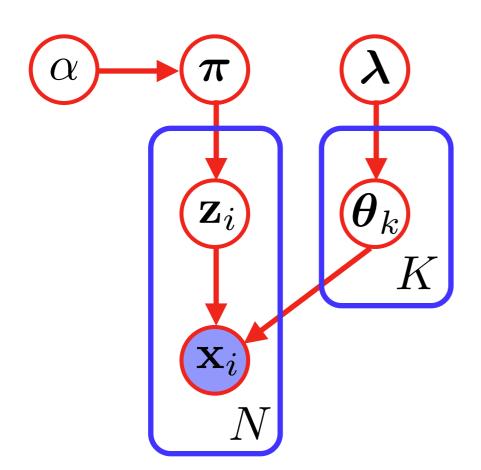
$$p(X, Z, \mu, \Sigma, \pi) = p(X \mid Z, \mu, \Sigma)p(Z \mid \pi)p(\pi \mid \alpha)p(\mu, \Sigma \mid \lambda)$$

data likelihood (Gaussian)

correspondence prob. (Multinomial)

mixture prior (Dirichlet)

parameter prior (Gauss-IW)



In this model, we use:

$$ullet$$
 $oldsymbol{\mu}=(oldsymbol{\mu}_1,\ldots,oldsymbol{\mu}_K)$

•
$$\Sigma = (\Sigma_1, \dots, \Sigma_K)$$

$$\bullet \ (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \boldsymbol{\theta}_k$$

- The full posterior of the Gaussian Mixture Model is $p(X, Z, \mu, \Sigma, \pi) = p(X \mid Z, \mu, \Sigma) p(Z \mid \pi) p(\pi \mid \alpha) p(\mu, \Sigma \mid \lambda)$
- To apply Gibbs sampling we need to first find closed-form expressions for all **full conditionals** (prob. distr. of one variable given all others)

• The full posterior of the Gaussian Mixture Model is $p(X, Z, \mu, \Sigma, \pi) = p(X \mid Z, \mu, \Sigma) p(Z \mid \pi) p(\pi \mid \alpha) p(\mu, \Sigma \mid \lambda)$

- To apply Gibbs sampling we need to first find closed-form expressions for all full conditionals
- These are:

$$p(z_{i} = k \mid \mathbf{x}_{i}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \pi_{k} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

$$p(\boldsymbol{\pi} \mid \mathbf{z}) = \text{Dir}(\{\alpha_{k} + \sum_{i=1}^{K} z_{ik}\}_{k=1}^{K})$$

$$p(\boldsymbol{\mu}_{k} \mid \boldsymbol{\Sigma}_{k}, \boldsymbol{Z}, \boldsymbol{X}) = \mathcal{N}(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{k}, \boldsymbol{V}_{k})$$

$$p(\boldsymbol{\Sigma}_{k} \mid \boldsymbol{\mu}_{k}, \boldsymbol{Z}, \boldsymbol{X}) = \mathcal{IW}(\boldsymbol{\Sigma}_{k} \mid \boldsymbol{S}_{k}, \boldsymbol{\nu}_{k})$$

The full posterior of the Gaussian Mixture Model is

$$p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}) = p(X \mid Z, \boldsymbol{\mu}, \Sigma) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$$

- To apply Gibbs sampling we need to first find closed-form expressions for all full conditionals
- These are:

$$p(z_{i} = k \mid \mathbf{x}_{i}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \pi_{k} \mathcal{N}(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

$$p(\boldsymbol{\pi} \mid \mathbf{z}) = \text{Dir}(\{\alpha_{k} + \sum_{i=1}^{N} z_{ik}\}_{k=1}^{K})$$

$$p(\boldsymbol{\mu}_{k} \mid \boldsymbol{\Sigma}_{k}, \boldsymbol{Z}, \boldsymbol{X}) = \mathcal{N}(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{k}, V_{k})$$

$$p(\boldsymbol{\Sigma}_{k} \mid \boldsymbol{\mu}_{k}, \boldsymbol{Z}, \boldsymbol{X}) = \mathcal{IW}(\boldsymbol{\Sigma}_{k} \mid S_{k}, \nu_{k})$$

A More Efficient Variant

Remember: we have chosen conjugate priors

Likelihood	Conjugate Prior
1 1 "	Dirichlet $\operatorname{Dir}(\pi_1,\ldots,\pi_k\mid lpha_1,\ldots,lpha_K)$
Multivariate Normal $p(X \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{N} \mathcal{N}(\mathbf{x}_i \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$	Normal-Inverse-Wishart NIW(μ , Σ \mathbf{m}_0 , κ_0 , ν_0 , S_0)

This means, we can compute posteriors in closed form and marginalize out the model parameters!

Rao-Blackwellization

Instead of computing

$$p(X, Z, \mu, \Sigma, \pi, \alpha, \lambda)$$

we compute ("marginalization"):

$$\int \int \int p(X, Z, \mu, \Sigma, \pi, \alpha, \lambda) d\mu d\Sigma d\pi$$

and sample from the resulting full conditionals.

This is called **Rao-Blackwellization.** The resulting sampling method is called **collapsed** Gibbs sampling.

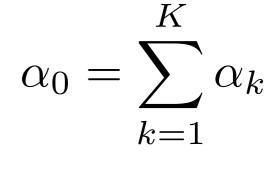
Dirichlet Distribution

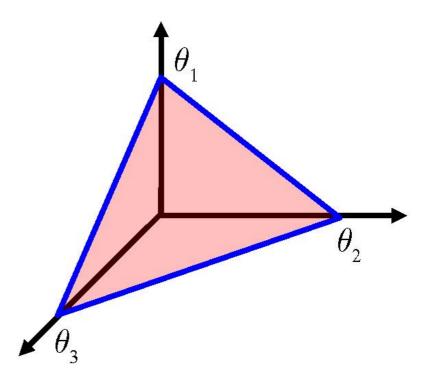
The Dirichlet distribution is defined as:

$$Dir(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_K)} \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$

$$0 \le \pi_k \le 1 \qquad \sum_{k=1}^K \pi_k = 1$$

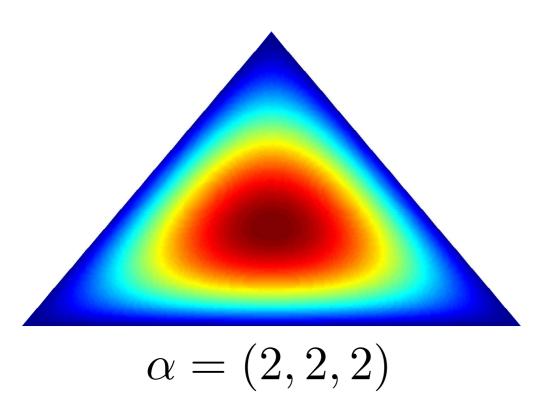
- It is the conjugate prior for the multinomial distribution
- The parameter α can be interpreted as the effective number of observations for every state



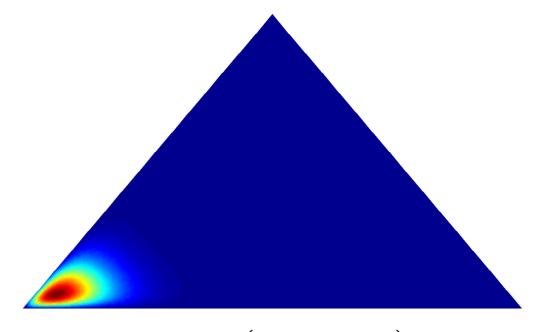


The simplex for K=3

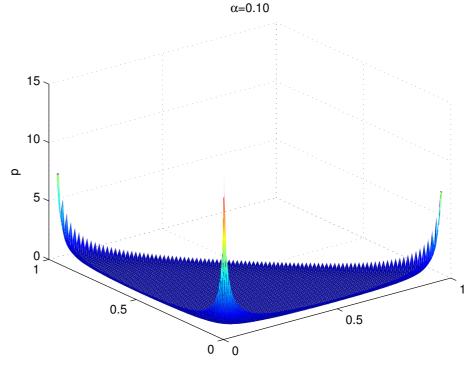
Some Examples



- α_0 controls the strength of the distribution ("peakedness")
- α_k control the location of the peak



$$\alpha = (20, 2, 2)$$



$$\alpha = (0.1, 0.1, 0.1)$$

Conjugacy

The Multinomial distribution is defined as:

$$p(\mathbf{z} \mid \pi_1, \dots, \pi_K) = \prod_{k=1}^K \pi_k^{z_k}$$
 $\mathbf{z} \in \{0, 1\}^K$

Conjugacy means:

$$p(\pi_1, \dots, \pi_K \mid \mathbf{z}) \propto p(\mathbf{z} \mid \pi_1, \dots, \pi_K) p(\pi_1, \dots, \pi_K \mid \alpha_1, \dots, \alpha_K)$$

Multinomial Dirichlet

13

Conjugacy

The Multinomial distribution is defined as:

$$p(\mathbf{z} \mid \pi_1, \dots, \pi_K) = \prod_{k=1}^K \pi_k^{z_k}$$
 $\mathbf{z} \in \{0, 1\}^K$

Conjugacy means:

$$p(\pi_1, \dots, \pi_K \mid \mathbf{z}) = \bar{\eta}^1 p(\mathbf{z} \mid \pi_1, \dots, \pi_K) p(\pi_1, \dots, \pi_K \mid \alpha_1, \dots, \alpha_K)$$

$$= \text{Dir}(\pi_1, \dots, \pi_k \mid \alpha_1', \dots, \alpha_K')$$

where
$$\alpha'_k = \alpha_k + z_k$$

Marginalization

• The normalizer η can be computed as

$$p(Z \mid \alpha_1, \dots, \alpha_K) = \int p(Z \mid \pi_1, \dots, \pi_K) p(\pi_1, \dots, \pi_K \mid \alpha_1, \dots, \alpha_K) d\pi$$
Multinomial
Dirichlet

note: $Z = \mathbf{z}_1, \dots \mathbf{z}_N$

This can also be computed in closed form:

$$p(Z \mid \pi_1, \dots, \pi_K) = \prod_{i=1}^N \prod_{k=1}^K \pi_k^{z_{ik}} = \prod_{k=1}^K \pi_k^{N_k}$$

Marginalization

• The normalizer η can be computed as

$$p(Z \mid \alpha_1, \dots, \alpha_K) = \int p(Z \mid \pi_1, \dots, \pi_K) p(\pi_1, \dots, \pi_K \mid \alpha_1, \dots, \alpha_K) d\pi$$
Multinomial
Dirichlet

note: $Z = \mathbf{z}_1, \dots \mathbf{z}_N$

This can also be computed in closed form:

$$p(Z \mid \pi_1, \dots, \pi_K) = \prod_{i=1}^N \prod_{k=1}^K \pi_k^{z_{ik}} = \prod_{k=1}^K \pi_k^{N_k}$$

$$\Rightarrow p(Z \mid \alpha_1, \dots, \alpha_K) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_0 + N)} \prod_{k=1}^K \frac{\Gamma(\alpha_k + N_k)}{\Gamma(\alpha_k)}$$

17

 The same operations can be done for the other likelihood-prior pair:

• Conjugacy: $p(\mu, \Sigma \mid X) = \eta'^{-1} p(X \mid \mu, \Sigma) p(\mu, \Sigma \mid \lambda)$

Gaussian

NIW

- The same operations can be done for the other likelihood-prior pair:
- Conjugacy: $p(\mu, \Sigma \mid X) = \eta'^{-1} p(X \mid \mu, \Sigma) p(\mu, \Sigma \mid \lambda)$ = NIW $(\mu, \Sigma \mid \lambda_N)$

(we omit details of how to compute λ_N)

- The same operations can be done for the other likelihood-prior pair:
- Conjugacy: $p(\mu, \Sigma \mid X) = \eta'^{-1} p(X \mid \mu, \Sigma) p(\mu, \Sigma \mid \lambda)$
- Marginalization:

$$p(X) = \eta' = \int \int p(X \mid \mu, \Sigma) p(\mu, \Sigma \mid \lambda) d\mu d\Sigma$$

- The same operations can be done for the other likelihood-prior pair:
- Conjugacy: $p(\mu, \Sigma \mid X) = \eta'^{-1} p(X \mid \mu, \Sigma) p(\mu, \Sigma \mid \lambda)$
- Marginalization:

$$p(X) = \eta' = \int \int p(X \mid \mu, \Sigma) p(\mu, \Sigma \mid \lambda) d\mu d\Sigma$$

$$= \pi^{-ND/2} \frac{\kappa_0^{D/2} |S_0|^{\nu_0/2}}{\kappa_N^{D/2} |S_N|^{\nu_N/2}} \prod_{i=1}^{D} \frac{\Gamma(\frac{\nu_N + 1 - i}{2})}{\Gamma(\frac{\nu_0 + 1 - i}{2})}$$

(again, we omit details)

How Can we Use That?

Our goal is to find the full conditionals:

$$p(\mathbf{z}_i = k \mid Z_{-i}, X, \alpha, \lambda) \propto p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) p(X \mid \mathbf{z}_i = k, Z_{-i}, \alpha, \lambda)$$

How Can we Use That?

Our goal is to find the full conditionals:

$$p(\mathbf{z}_i = k \mid Z_{-i}, X, \alpha, \lambda) \propto p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) p(X \mid \mathbf{z}_i = k, Z_{-i}, \alpha, \lambda)$$

$$= p(\mathbf{z}_{i} = k \mid Z_{-i}, \alpha) p(\mathbf{x}_{i} \mid X_{-i}, \mathbf{z}_{i} = k, Z_{-i}, \lambda) p(X_{-i} \mid \mathbf{z}_{i} = k, Z_{-i}, \lambda)$$

$$\propto p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) p(\mathbf{x}_i \mid X_{-i}, \mathbf{z}_i = k, Z_{-i}, \lambda)$$

How Can we Use That?

Our goal is to find the full conditionals:

$$p(\mathbf{z}_i = k \mid Z_{-i}, X, \alpha, \lambda) \propto p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) p(X \mid \mathbf{z}_i = k, Z_{-i}, \alpha, \lambda)$$

$$= p(\mathbf{z}_{i} = k \mid Z_{-i}, \alpha) p(\mathbf{x}_{i} \mid X_{-i}, \mathbf{z}_{i} = k, Z_{-i}, \lambda) p(X_{-i} \mid \mathbf{z}_{i} = k, Z_{-i}, \lambda)$$

$$\propto p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) p(\mathbf{x}_i \mid X_{-i}, \mathbf{z}_i = k, Z_{-i}, \lambda)$$

 We are left with two full conditionals that we can compute in closed form and then sample from the product

The First Term

24

$$p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) = \frac{p(Z \mid \alpha)}{p(Z_{-i} \mid \alpha)} \mathbf{z}_i = k$$

The First Term

$$p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) = \frac{p(Z \mid \alpha)}{p(Z_{-i} \mid \alpha)} \mathbf{z}_i = k$$

We already computed the numerator (see above):

$$p(Z \mid \alpha_1, \dots, \alpha_K) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_0 + N)} \prod_{k=1}^K \frac{\Gamma(\alpha_k + N_k)}{\Gamma(\alpha_k)}$$

The denominator is very similar:

$$p(Z_{-i} \mid \alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_0 + N - 1)} \prod_{k=1}^{K} \frac{\Gamma(\alpha_k + N_{-i,k})}{\Gamma(\alpha_k)}$$

The First Term

$$p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) = \frac{p(Z \mid \alpha)}{p(Z_{-i} \mid \alpha)} \mathbf{z}_i = k$$

We already computed the numerator (see above):

$$p(Z \mid \alpha_1, \dots, \alpha_K) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_0 + N)} \prod_{k=1}^K \frac{\Gamma(\alpha_k + N_k)}{\Gamma(\alpha_k)}$$

The denominator is very similar:

$$p(Z_{-i} \mid \alpha) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_0 + N - 1)} \prod_{k=1}^{K} \frac{\Gamma(\alpha_k + N_{-i,k})}{\Gamma(\alpha_k)}$$

Result:

$$p(\mathbf{z}_i = k \mid Z_{-i}, \alpha) = \frac{N_{-i,k} + \alpha_k}{N + \alpha_0 - 1}$$

The Second Term

$$p(\mathbf{x}_i \mid X_{-i}, \mathbf{z}_i = k, Z_{-i}, \lambda) = p(\mathbf{x}_i \mid X_{-i,k}, \lambda)$$

We use the same idea here:

$$p(\mathbf{x}_i \mid X_{-i,k}, \lambda) = \frac{p(X_k \mid \lambda)}{p(X_{-i,k} \mid \lambda)}$$

All data samples that belong to cluster k, except the i-th one

 This can be computed again from marginalization (see above). Again, we omit details.

GMM with Collapsed Gibbs Samlping

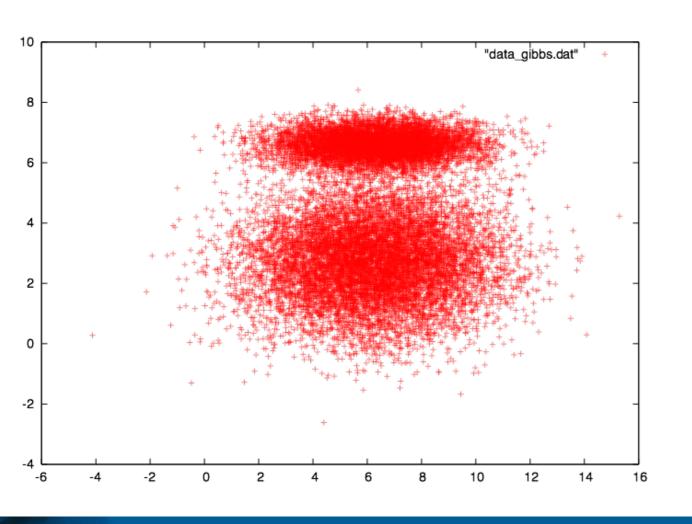
Algorithm 1 Collapsed Gibbs sampler for a finite Gaussian mixture model.

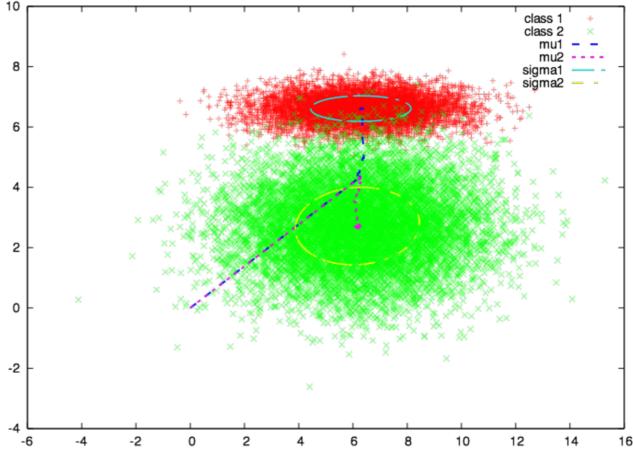
```
1: Choose an initial z.
      for T iterations do

    ▷ Gibbs sampling iterations

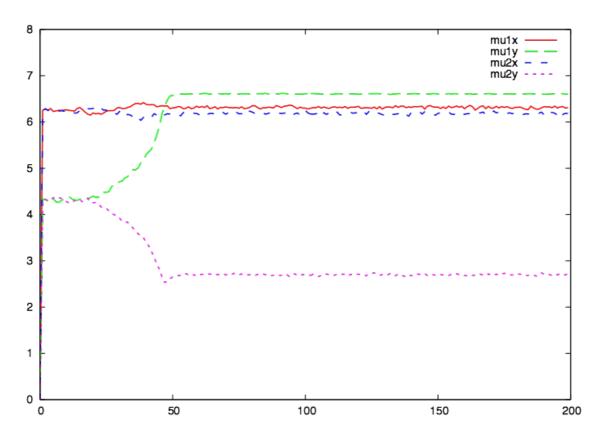
            for i=1 to N do
                  Remove \mathbf{x}_i's statistics from component z_i.
                                                                                                                                 \triangleright Old assignment for \mathbf{x}_i
  4:
                  for k = 1 to K do
                                                                                                                         > Every possible component
 5:
                         Calculate P(z_i = k | \mathbf{z}_{\setminus i}, \boldsymbol{\alpha}) using (25).
  6:
                         Calculate p(\mathbf{x}_i|\mathcal{X}_{k\setminus i},\boldsymbol{\beta}) in (27) using (14) or (15).
                         Calculate P(z_i = k | \mathbf{z}_{\setminus i}, \mathcal{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \propto P(z_i = k | \mathbf{z}_{\setminus i}, \boldsymbol{\alpha}) \, p(\mathbf{x}_i | \mathcal{X}_{k \setminus i}, \boldsymbol{\beta}).
                  end for
 9:
                   Sample k_{\text{new}} from P(z_i|\mathbf{z}_{\setminus i}, \mathcal{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}) after normalizing.
10:
                  Add \mathbf{x}_i's statistics to the component z_i = k_{\text{new}}.
                                                                                                                               \triangleright New assignment for \mathbf{x}_i
11:
            end for
12:
13: end for
```


- First, we initialize all variables
- Then we iterate over sampling from each conditional in turn
- In the end, we look at μ_k and Σ_k





How Often Do We Have To Sample?



- Here: after 50 sample rounds the values don't change any more
- In general, the **mixing time** τ_{ϵ} is related to the **eigen gap** $\gamma = \lambda_1 \lambda_2$ of the transition matrix:

$$\tau_{\epsilon} \le O(\frac{1}{\gamma} \log \frac{n}{\epsilon})$$

How Can We Get Rid of K?

- We still have the problem that we need the number K of clusters given
- Idea: use the same methodology, but let K go to infinity
- Instead of a Dirichlet distribution, we will then be using a Dirichlet process

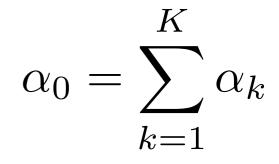
Dirichlet Distribution

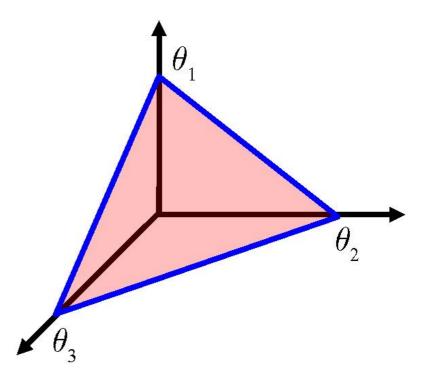
The Dirichlet distribution is defined as:

$$Dir(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_K)} \prod_{k=1}^K \pi_k^{\alpha_k - 1}$$

$$0 \le \pi_k \le 1 \qquad \sum_{k=1}^K \pi_k = 1$$

- It is the conjugate prior for the multinomial distribution
- The parameter α can be interpreted as the effective number of observations for every state





The simplex for K=3

Other Properties of the Dirichlet Dist.

"Agglomerative":

$$p(\mu_1, \dots, \mu_K) = \text{Dir}(\mu_1, \dots, \mu_K \mid \alpha_1, \dots, \alpha_K)$$

$$\Rightarrow p(\mu_1 + \mu_2, \dots, \mu_K) = \text{Dir}(\mu_1 + \mu_2, \dots, \mu_K \mid \alpha_1 + \alpha_2, \dots, \alpha_K)$$

this also holds for general partitions of 1, ..., K

"Decimative":

$$p(\mu_1, \dots, \mu_K) = \operatorname{Dir}(\mu_1, \dots, \mu_K \mid \alpha_1, \dots, \alpha_K)$$

$$\wedge p(\nu_1, \nu_2) = \operatorname{Dir}(\nu_1, \nu_2 \mid \alpha_1 \beta_1, \alpha_1 \beta_2) \qquad \beta_1 + \beta_2 = 1$$

$$\Rightarrow p(\mu_1 \nu_1, \mu_1 \nu_2, \mu_2 \dots, \mu_K) = \operatorname{Dir}(\mu_1 \nu_1, \mu_1 \nu_2, \mu_2, \dots, \mu_K \mid \alpha_1 \beta_1, \alpha_1 \beta_2, \alpha_2, \dots, \alpha_K)$$

From Finite to Infinite Dimensions

 Observation: every sample from a Dirichlet distribution represents a distribution over K finite states

We can generalize this to infinitely many states

$$1 \sim \text{Dir}(\mu \mid \alpha)$$

$$(\mu_{1}, \mu_{2}) \sim \text{Dir}(\mu_{1}, \mu_{2} \mid \alpha/2, \alpha/2)$$

$$(\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22}) \sim \text{Dir}(\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22} \mid \alpha/4, \alpha/4, \alpha/4, \alpha/4)$$

$$\vdots$$

The result is a discrete, but infinite distribution

The Dirichlet Process

Definition: A Dirichlet process (DP) is a distribution over probability measures G, i.e. $G(\theta) \ge 0$ and $\int G(\theta) d\theta = 1$. If for any partition (T_1, \ldots, T_K) it holds: $(G(T_1), \ldots, G(T_K)) \sim \text{Dir}(\alpha H(T_1), \ldots, \alpha H(T_K))$

then G is sampled from a Dirichlet process.

Notation: $G \sim \mathrm{DP}(\alpha, H)$

where α is the concentration parameter and H is the base measure

The Dirichlet Process

Definition: A Dirichlet process (DP) is a distribution over probability measures G, i.e. $G(\theta) \geq 0$ and $\int G(\theta) d\theta = 1$. If for any partition (T_1, \ldots, T_K) it holds: $(G(T_1), \ldots, G(T_K)) \sim \text{Dir}(\alpha H(T_1), \ldots, \alpha H(T_K))$

then *G* is sampled from a Dirichlet process.

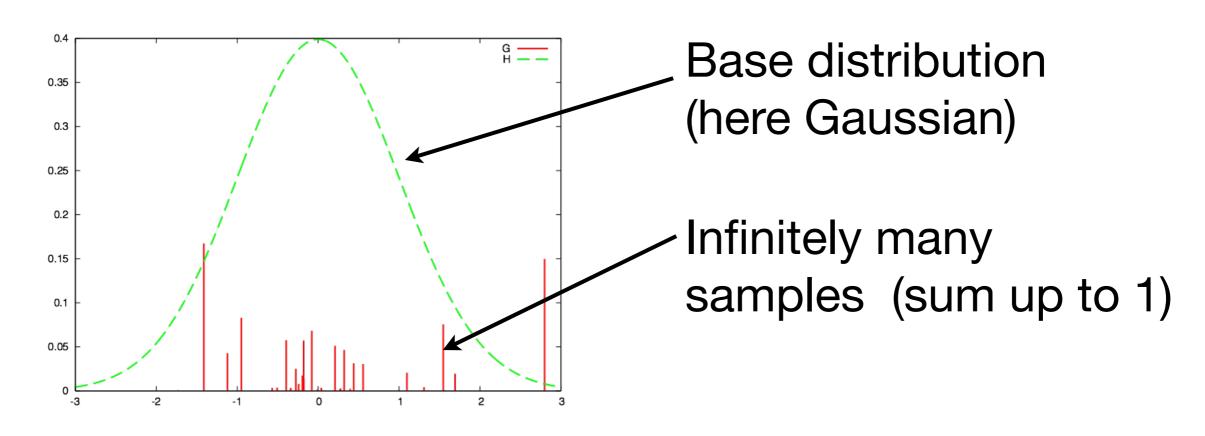
Notation: $G \sim \mathrm{DP}(\alpha, H)$

where α is the concentration parameter and H is the base measure

Note: This is not a constructive definition!

Intuitive Interpretation

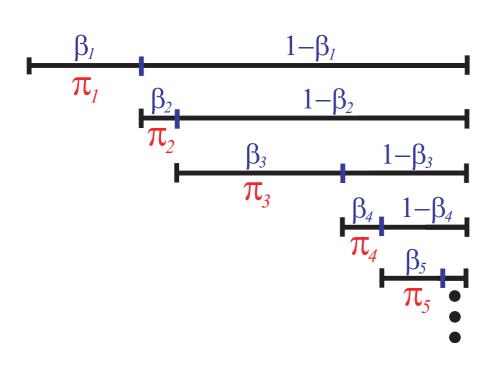
- Every sample from a Dirichlet distribution is a vector of K positive values that sum up to 1, i.e. the sample itself is a finite distribution
- Accordingly, a sample from a Dirichlet process is an infinite (but still discrete!) distribution

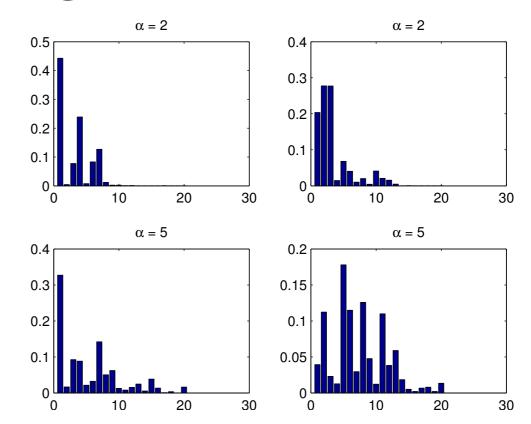


Construction of a Dirichlet Process

- The Dirichlet process is only defined implicitly, i.e.
 we can test whether a given probability measure is
 sampled from a DP, but we can not yet construct
 one.
- A DP can be constructed using the "stickbreaking" analogy:
 - imagine a stick of length 1
 - we select a random number β between 0 and 1 from a Beta-distribution
 - we break the stick at $\pi = \beta$ * length-of-stick
 - we repeat this infinitely often

The Stick-Breaking Construction





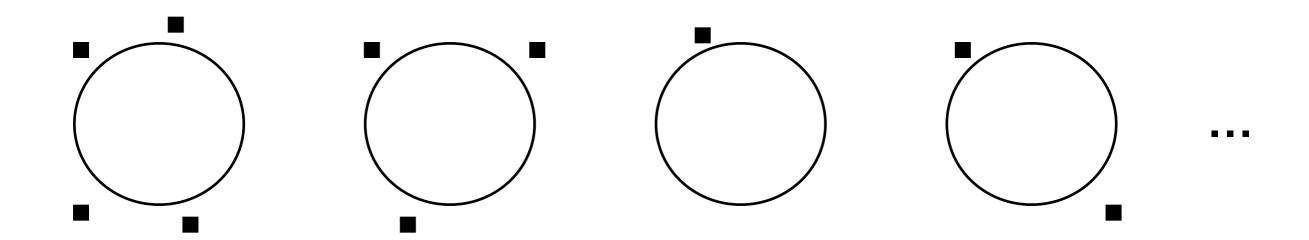
formally, we have

$$eta_k \sim ext{Beta}(1, lpha) \qquad \pi_k = eta_k \prod_{l=1}^{k-1} (1 - eta_l) = eta_k (1 - \sum_{l=1}^{k-1} \pi_l)$$

now we define

$$G(m{ heta}) = \sum_{k=1}^{\infty} \pi_k \delta(m{ heta}_k, m{ heta})$$
 $m{ heta}_k \sim H$ then: $G \sim \mathrm{DP}(\alpha, H)$

The Chinese Restaurant Process



- Consider a restaurant with infinitely many tables
- Everytime a new customer comes in, he sits at an occupied table with probability proportional to the number of people sitting at that table, but he may choose to sit on a new table with decreasing probability as more customers enter the room.

The Chinese Restaurant Process

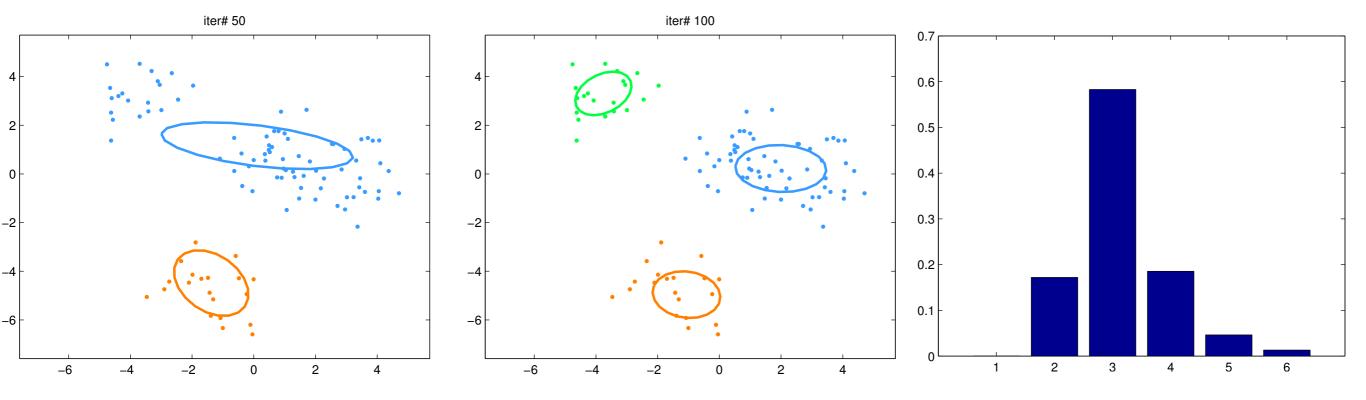
 It can be shown that the probability for a new customer is

$$p(\bar{\boldsymbol{\theta}}_{N+1} = \boldsymbol{\theta} \mid \bar{\boldsymbol{\theta}}_{1:N}, \alpha, H) = \frac{1}{\alpha + N} \left(\alpha H(\boldsymbol{\theta}) + \sum_{k=1}^{K} N_k \delta(\bar{\boldsymbol{\theta}}_k, \boldsymbol{\theta}) \right)$$

- This means that currently occupied tables are more likely to get new customers (rich get richer)
- The number of occupied tables grows logarithmically with the number of customers

The DP for Mixture Modeling

- Using the stick-breaking construction, we see that we can extend the mixture model clustering to the situation where K goes to infinity
- The algorithm can be implemented using Gibbs sampling



DPMM with Collapsed Gibbs Sampling

Algorithm 2 Collapsed Gibbs sampler for an infinite Gaussian mixture model.

```
1: Choose an initial z.
     for T iterations do
                                                                                                                        ▶ Gibbs sampling iterations
            for i = 1 to N do
 3:
                  Remove \mathbf{x}_i's statistics from component z_i.
                                                                                                                               \triangleright Old assignment for \mathbf{x}_i
 4:
                  for k = 1 to K do
                                                                                                        ▶ Every possible existing component
 5:
                        Calculate P(z_i = k | \mathbf{z}_{\setminus i}, \alpha) = \frac{N_{k \setminus i}}{N + \alpha - 1} as in (34).
 6:
                         Calculate p(\mathbf{x}_i|\mathcal{X}_{k\setminus i},\boldsymbol{\beta}) in (35) using (14) or (15).
 7:
                         Calculate P(z_i = k | \mathbf{z}_{\setminus i}, \mathcal{X}, \alpha, \boldsymbol{\beta}) \propto P(z_i = k | \mathbf{z}_{\setminus i}, \alpha) p(\mathbf{x}_i | \mathcal{X}_{k \setminus i}, \boldsymbol{\beta}).
 8:
                  end for
 9:
                  Calculate P(z_i = k^* | \mathbf{z}_{\setminus i}, \alpha) = \frac{\alpha}{N + \alpha - 1} as in (34).

    Consider a new component

10:
                  Calculate p(\mathbf{x}_i|\boldsymbol{\beta}) in (36) using (14) or (15).
11:
                  Calculate P(z_i = k^* | \mathbf{z}_{\setminus i}, \mathcal{X}, \alpha, \boldsymbol{\beta}) \propto P(z_i = k^* | \mathbf{z}_{\setminus i}, \alpha) p(\mathbf{x}_i | \boldsymbol{\beta}).
12:
                  Sample k_{\text{new}} from P(z_i|\mathbf{z}_{\setminus i}, \mathcal{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}) after normalizing.
13:
                  Add \mathbf{x}_i's statistics to the component z_i = k_{\text{new}}.
                                                                                                                              \triangleright New assignment for \mathbf{x}_i
14:
                  If any component is empty, remove it and decrease K.
15:
            end for
16:
17: end for
```


Summary

- We can use Gibbs sampling to estimate a Gaussian Mixture model for a given data set
- As we are using conjugate priors, we can compute posters in closed form ("Bayesian approach")
- To be more efficient, we use collapsed Gibbs sampling, where model parameters are marginalized out ("Rao-Blackwellization")
- The same idea can be used to extend the GMM for infinite mixtures (K goes to infinity)
- This results in the Dirichlet Process Mixture Model (DPMM)

