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Motivation

• When we talked about clustering, we discussed 
two main approaches: k-means and Expectation-
Maximization 

• Both algorithms required the number K of clusters  

• To find a good K, one could try different values for 
K and decide which is the best on some criterion 

Questions:  

• is there a more sound (i.e. statistically principled) way 
to find the number of clusters? 

•can we do clustering and estimating of K online?

2
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Motivation

• When we talked about clustering, we discussed 
two main approaches: k-means and Expectation-
Maximization 

• Both algorithms required the number K of clusters  

• To find a good K, one could try different values for 
K and decide which is the best on some criterion 

Questions:  

• is there a more sound (i.e. statistically principled) way 
to find the number of clusters? 

•can we do clustering and estimating of K online? 

First step: derive a new algorithm for given (fixed) K

3
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Gibbs Sampling (Rep.)

• Initialize 

• For  

•Sample 

•Sample 

•... 

•Sample  

Idea: sample from the full conditional 

This can be obtained, e.g. from the Markov 
blanket in graphical models.

4

{zi : i = 1, . . . ,M}
⌧ = 1, . . . , T

z(⌧+1)
1 ⇠ p(z1 | z(⌧)2 , . . . , z(⌧)M )

z(⌧+1)
2 ⇠ p(z2 | z(⌧+1)

1 , . . . , z(⌧)M )

z(⌧+1)
M ⇠ p(zM | z(⌧+1)

1 , . . . , z(⌧+1)
M�1 )
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Gibbs Sampling for GMMs

• The full posterior of the Gaussian Mixture Model is

5

data likelihood 
(Gaussian)

correspondence 
prob. (Multinomial)

mixture prior 
(Dirichlet)

parameter prior 
(Gauss-IW)

xi

In this model, we use: 
•      
•      
•      

µ = (µ1, . . . ,µK)

⌃ = (⌃1, . . . ,⌃K)
(µk,⌃k) = ✓k

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
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Gibbs Sampling for GMMs

• To apply Gibbs sampling we need to first find 
closed-form expressions for all full conditionals 
(prob. distr. of one variable given all others)  

6

• The full posterior of the Gaussian Mixture Model is

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
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Gibbs Sampling for GMMs

• To apply Gibbs sampling we need to first find 
closed-form expressions for all full conditionals 

• These are:

7

p(zi = k | xi,µ,⌃,⇡) / ⇡kN (xi | µk,⌃k)

p(⇡ | z) = Dir({↵k +
NX

i=1

zik}Kk=1)

p(µk | ⌃k, Z,X) = N (µk | mk, Vk)

p(⌃k | µk, Z,X) = IW(⌃k | Sk, ⌫k)

• The full posterior of the Gaussian Mixture Model is

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
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Gibbs Sampling for GMMs

• To apply Gibbs sampling we need to first find 
closed-form expressions for all full conditionals 

• These are:

8

p(zi = k | xi,µ,⌃,⇡) / ⇡kN (xi | µk,⌃k)

p(⇡ | z) = Dir({↵k +
NX

i=1

zik}Kk=1)

p(µk | ⌃k, Z,X) = N (µk | mk, Vk)

p(⌃k | µk, Z,X) = IW(⌃k | Sk, ⌫k)

• The full posterior of the Gaussian Mixture Model is

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
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A More Efficient Variant 

Remember: we have chosen conjugate priors

9

Likelihood Conjugate Prior

Multinomial Dirichlet 

Multivariate Normal Normal-Inverse-Wishart 

Dir(⇡1, . . . , ⇡k | ↵1, . . . ,↵K)p(Z | ⇡1, . . . , ⇡k) =
KY

k=1

⇡zk
k

p(X | µ,⌃) =
NY

i=1

N(xi | µ,⌃) NIW(µ,⌃ | m0, 0, ⌫0, S 0)

This means, we can compute posteriors in closed 
form and marginalize out the model parameters!
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Rao-Blackwellization

Instead of computing 
 
we compute (“marginalization”): 
 
 
and sample from the resulting full conditionals. 

This is called Rao-Blackwellization. The 

resulting sampling method is called collapsed 

Gibbs sampling.

10

p(X,Z,µ,⌃,⇡,↵, �)

Z Z Z
p(X,Z,µ,⌃,⇡,↵, �)dµd⌃d⇡
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Dirichlet Distribution

• The Dirichlet distribution is defined as: 

• It is the conjugate prior for  
the multinomial distribution 

• The parameter    can be  
interpreted as the effective 
number of observations for  
every state

11

↵0 =
KX

k=1

↵k

The simplex for K=3

↵

Dir(⇡ | ↵) =
�(↵0)

�(↵1) · · · �(↵K)

KY

k=1

⇡↵k�1
k

0  ⇡k  1
KX

k=1

⇡k = 1
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•     controls the strength 
of the distribution 
(“peakedness”) 

•      control the location 
of the peak

↵0

Some Examples

12

0

0.5

1

0

0.5

1
0

5

10

15

α=0.10

p

↵ = (2, 2, 2) ↵ = (20, 2, 2)

↵ = (0.1, 0.1, 0.1)

↵k
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Conjugacy

• The Multinomial distribution is defined as: 

• Conjugacy means:

13

Multinomial Dirichlet

p(z | ⇡1, . . . , ⇡K) =
KY

k=1

⇡zk
k z 2 {0, 1}K

p(⇡1, . . . , ⇡K | z) / p(z | ⇡1, . . . , ⇡K)p(⇡1, . . . , ⇡K | ↵1, . . . ,↵K)
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Conjugacy

• The Multinomial distribution is defined as: 

• Conjugacy means: 
 
 
 
 
where

14

p(z | ⇡1, . . . , ⇡K) =
KY

k=1

⇡zk
k z 2 {0, 1}K

= Dir(⇡1, . . . , ⇡k | ↵01, . . . ,↵0K)

p(⇡1, . . . , ⇡K | z) = ⌘p(z | ⇡1, . . . , ⇡K)p(⇡1, . . . , ⇡K | ↵1, . . . ,↵K)

Normalizer

↵0k = ↵k + zk

�1
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Marginalization

• The normalizer η can be computed as  
 
 
 
 
note: Z = z1,…zN 

• This can also be computed in closed form: 

15

p(Z | ↵1, . . . ,↵K) =
Z

p(Z | ⇡1, . . . , ⇡K)p(⇡1, . . . , ⇡K | ↵1, . . . ,↵K)d⇡

Multinomial Dirichlet

p(Z | ⇡1, . . . , ⇡K) =
NY

i=1

KY

k=1

⇡zik
k =

KY

k=1

⇡Nk
k
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Marginalization

• The normalizer η can be computed as  
 
 
 
 
note: Z = z1,…zN 

• This can also be computed in closed form: 

16

p(Z | ↵1, . . . ,↵K) =
Z

p(Z | ⇡1, . . . , ⇡K)p(⇡1, . . . , ⇡K | ↵1, . . . ,↵K)d⇡

Multinomial Dirichlet

p(Z | ⇡1, . . . , ⇡K) =
NY

i=1

KY

k=1

⇡zik
k =

KY

k=1

⇡Nk
k

) p(Z | ↵1, . . . ,↵K) =
�(↵0)
�(↵0 + N)

KY

k=1

�(↵k + Nk)
�(↵k)
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The Other Pair

• The same operations can be done for the other 
likelihood-prior pair: 

• Conjugacy:

17

Gaussian NIW

p(µ,⌃ | X) = ⌘0�1 p(X | µ,⌃)p(µ,⌃ | �)
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The Other Pair

• The same operations can be done for the other 
likelihood-prior pair: 

• Conjugacy: 
 
 
(we omit details of how to compute λN)

18

= NIW(µ,⌃ | �N)

p(µ,⌃ | X) = ⌘0�1 p(X | µ,⌃)p(µ,⌃ | �)
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The Other Pair

• The same operations can be done for the other 
likelihood-prior pair: 

• Conjugacy: 

• Marginalization:

19

⌘0 =

Z Z
p(X | µ,⌃)p(µ,⌃ | �)dµd⌃

p(µ,⌃ | X) = ⌘0�1 p(X | µ,⌃)p(µ,⌃ | �)

p(X) =
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The Other Pair

• The same operations can be done for the other 
likelihood-prior pair: 

• Conjugacy: 

• Marginalization:  
 
 
 
 
 
 
(again, we omit details)

20

⌘0 =

Z Z
p(X | µ,⌃)p(µ,⌃ | �)dµd⌃

p(µ,⌃ | X) = ⌘0�1 p(X | µ,⌃)p(µ,⌃ | �)

p(X) =

= ⇡�ND/2 
D/2
0 |S 0|⌫0/2

D/2N |S N |⌫N/2

DY

i=1

�( ⌫N+1�i
2 )

�( ⌫0+1�i
2 )
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How Can we Use That?

• Our goal is to find the full conditionals:

21

p(zi = k | Z�i, X,↵, �) / p(zi = k | Z�i,↵)p(X | zi = k,Z�i,↵, �)
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How Can we Use That?

• Our goal is to find the full conditionals:

22

p(zi = k | Z�i, X,↵, �) / p(zi = k | Z�i,↵)p(X | zi = k,Z�i,↵, �)

= p(zi = k | Z�i,↵)p(xi | X�i, zi = k,Z�i, �)p(X�i | zi = k,Z�i, �)

/ p(zi = k | Z�i,↵)p(xi | X�i, zi = k,Z�i, �)
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How Can we Use That?

• Our goal is to find the full conditionals:  
 
 
 
 
 
 

• We are left with two full conditionals that we can 
compute in closed form and then sample from the 
product

23

p(zi = k | Z�i, X,↵, �) / p(zi = k | Z�i,↵)p(X | zi = k,Z�i,↵, �)

= p(zi = k | Z�i,↵)p(xi | X�i, zi = k,Z�i, �)p(X�i | zi = k,Z�i, �)

/ p(zi = k | Z�i,↵)p(xi | X�i, zi = k,Z�i, �)
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The First Term

24

p(zi = k | Z�i,↵) =
p(Z | ↵)

p(Z�i | ↵) zi = k
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The First Term

• We already computed the numerator (see above): 

• The denominator is very similar:

25

p(zi = k | Z�i,↵) =
p(Z | ↵)

p(Z�i | ↵) zi = k

) p(Z | ↵1, . . . ,↵K) =
�(↵0)
�(↵0 + N)

KY

k=1

�(↵k + Nk)
�(↵k)

p(Z�i | ↵) =
�(↵0)

�(↵0 + N � 1)

KY

k=1

�(↵k + N�i,k)
�(↵k)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

The First Term

• We already computed the numerator (see above): 

• The denominator is very similar: 

• Result: 

26

p(zi = k | Z�i,↵) =
p(Z | ↵)

p(Z�i | ↵) zi = k

) p(Z | ↵1, . . . ,↵K) =
�(↵0)
�(↵0 + N)

KY

k=1

�(↵k + Nk)
�(↵k)

p(Z�i | ↵) =
�(↵0)

�(↵0 + N � 1)

KY

k=1

�(↵k + N�i,k)
�(↵k)

p(zi = k | Z�i,↵) =
N�i,k + ↵k

N + ↵0 � 1
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The Second Term

• We use the same idea here: 

• This can be computed again from marginalization 
(see above). Again, we omit details.

27

p(xi | X�i, zi = k,Z�i, �) = p(xi | X�i,k, �)

p(xi | X�i,k, �) =
p(Xk | �)

p(X�i,k | �)

All data samples 
that belong to 

cluster k, except 
the i-th one 
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GMM with Collapsed Gibbs Samlping

28
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Gibbs Sampling for GMMs

• First, we initialize all variables 

• Then we iterate over sampling from each 
conditional in turn 

• In the end, we look at      and  

29

µk ⌃k
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How Often Do We Have To Sample?

• Here: after 50 sample rounds the values don’t 
change any more 

• In general, the mixing time     is related to the 
eigen gap                  of the transition matrix:

30

� = �1 � �2

⌧✏

⌧✏  O(

1

�
log

n

✏
)
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How Can We Get Rid of K?

• We still have the problem that we need the 
number K of clusters given 

• Idea: use the same methodology, but let K go to 
infinity 

• Instead of a Dirichlet distribution, we will then be 
using a Dirichlet process

31



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Dirichlet Distribution

• The Dirichlet distribution is defined as: 

• It is the conjugate prior for  
the multinomial distribution 

• The parameter    can be  
interpreted as the effective 
number of observations for  
every state

32

↵0 =
KX

k=1

↵k

The simplex for K=3

↵

Dir(⇡ | ↵) =
�(↵0)

�(↵1) · · · �(↵K)

KY

k=1

⇡↵k�1
k

0  ⇡k  1
KX

k=1

⇡k = 1
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Other Properties of the Dirichlet Dist.

• “Agglomerative”: 
 
 
 
this also holds for general partitions of 1,…,K 

• “Decimative”: 
 

33

p(µ1, . . . , µK) = Dir(µ1, . . . , µK | ↵1, . . . ,↵K)

) p(µ1 + µ2, . . . , µK) = Dir(µ1 + µ2, . . . , µK | ↵1 + ↵2, . . . ,↵K)

p(µ1, . . . , µK) = Dir(µ1, . . . , µK | ↵1, . . . ,↵K)

^p(⌫1, ⌫2) = Dir(⌫1, ⌫2 | ↵1�1,↵1�2) �1 + �2 = 1

) p(µ1⌫1, µ1⌫2, µ2 . . . , µK) = Dir(µ1⌫1, µ1⌫2, µ2, . . . , µK | ↵1�1,↵1�2,↵2, . . . ,↵K)
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From Finite to Infinite Dimensions

• Observation: every sample from a Dirichlet 

distribution represents a distribution over K finite 
states 

• We can generalize this to infinitely many states 

• The result is a discrete, but infinite distribution

34

1 ⇠ Dir(µ | ↵)

(µ1, µ2) ⇠ Dir(µ1, µ2 | ↵/2,↵/2)

(µ11, µ12, µ21, µ22) ⇠ Dir(µ11, µ12, µ21, µ22 | ↵/4,↵/4,↵/4,↵/4)
...
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The Dirichlet Process

Definition: A Dirichlet process (DP) is a distribution 

over probability measures G, i.e.               and  

                 . If for any partition                    it holds:  

then G is sampled from a Dirichlet process. 

Notation:  

where      is the concentration parameter 
and      is the base measure

35

G(✓) � 0Z
G(✓)d✓ = 1 (T1, . . . , TK)

(G(T1), . . . , G(TK)) ⇠ Dir(↵H(T1), . . . ,↵H(TK))

G ⇠ DP(↵, H)

↵

H
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The Dirichlet Process

Definition: A Dirichlet process (DP) is a distribution 

over probability measures G, i.e.               and  

                 . If for any partition                    it holds:  

then G is sampled from a Dirichlet process. 

Notation:  

where      is the concentration parameter 
and      is the base measure 

Note: This is not a constructive definition!

36

G(✓) � 0Z
G(✓)d✓ = 1 (T1, . . . , TK)

(G(T1), . . . , G(TK)) ⇠ Dir(↵H(T1), . . . ,↵H(TK))

G ⇠ DP(↵, H)

↵

H
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Intuitive Interpretation

• Every sample from a Dirichlet distribution is a 

vector of K positive values that sum up to 1, i.e. 
the sample itself is a finite distribution 

• Accordingly, a sample from a Dirichlet process is 
an infinite (but still discrete!) distribution

37

Base distribution 
(here Gaussian)

Infinitely many 
samples  (sum up to 1)
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Construction of a Dirichlet Process

• The Dirichlet process is only defined implicitly, i.e. 
we can test whether a given probability measure is 
sampled from a DP, but we can not yet construct 
one. 

• A DP can be constructed using the “stick-
breaking” analogy: 

• imagine a stick of length 1 

•we select a random number β between 0 and 1 from a 
Beta-distribution 

•we break the stick at π = β * length-of-stick 

•we repeat this infinitely often

38
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The Stick-Breaking Construction

• formally, we have 

• now we define

39

β1

π
1
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2
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�k ⇠ Beta(1,↵) ⇡k = �k

k�1Y

l=1

(1� �l) = �k(1�
k�1X

l=1

⇡l)

✓k ⇠ HG(✓) =
1X

k=1

⇡k�(✓k,✓) then: G ⇠ DP(↵, H)
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The Chinese Restaurant Process

• Consider a restaurant with infinitely many tables 

• Everytime a new customer comes in, he sits at an 
occupied table with probability proportional to 
the number of people sitting at that table, but he 
may choose to sit on a new table with decreasing  
probability as more customers enter the room.

40

...
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The Chinese Restaurant Process

• It can be shown that the probability for a new 
customer is 

• This means that currently occupied tables are 
more likely to get new customers (rich get richer) 

• The number of occupied tables grows 
logarithmically with the number of customers

41

p(✓̄N+1 = ✓ | ✓̄1:N ,↵, H) =
1

↵+N

 
↵H(✓) +

KX

k=1

Nk�(✓̄k,✓)

!
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The DP for Mixture Modeling

• Using the stick-breaking construction, we see that 
we can extend the mixture model clustering to the 
situation where K goes to infinity 

• The algorithm can be implemented using Gibbs 
sampling

42
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DPMM with Collapsed Gibbs Sampling

43
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Summary

• We can use Gibbs sampling to estimate a 
Gaussian Mixture model for a given data set 

• As we are using conjugate priors, we can compute 
posters in closed form (“Bayesian approach”) 

• To be more efficient, we use collapsed Gibbs 
sampling, where model parameters are 
marginalized out (“Rao-Blackwellization”) 

• The same idea can be used to extend the GMM 
for infinite mixtures (K goes to infinity) 

• This results in the Dirichlet Process Mixture Model 
(DPMM)

44


