15. Clustering II

Motivation

- When we talked about clustering, we discussed two main approaches: k-means and ExpectationMaximization
- Both algorithms required the number K of clusters
- To find a good K, one could try different values for K and decide which is the best on some criterion Questions:
- is there a more sound (i.e. statistically principled) way to find the number of clusters?
- can we do clustering and estimating of K online?

Motivation

- When we talked about clustering, we discussed two main approaches: k-means and ExpectationMaximization
- Both algorithms required the number K of clusters
- To find a good K, one could try different values for K and decide which is the best on some criterion
Questions:
- is there a more sound (i.e. statistically principled) way to find the number of clusters?
can we do clustering and estimating of K online?
First step: derive a new algorithm for given (fixed) K

Gibbs Sampling (Rep.)

- Initialize $\left\{z_{i}: i=1, \ldots, M\right\}$
- For $\tau=1, \ldots, T$
- Sample $z_{1}^{(\tau+1)} \sim p\left(z_{1} \mid z_{2}^{(\tau)}, \ldots, z_{M}^{(\tau)}\right)$
- Sample $z_{2}^{(\tau+1)} \sim p\left(z_{2} \mid z_{1}^{(\tau+1)}, \ldots, z_{M}^{(\tau)}\right)$
- Sample $z_{M}^{(\tau+1)} \sim p\left(z_{M} \mid z_{1}^{(\tau+1)}, \ldots, z_{M-1}^{(\tau+1)}\right)$

Idea: sample from the full conditional This can be obtained, e.g. from the Markov blanket in graphical models.

Gibbs Sampling for GMMs

- The full posterior of the Gaussian Mixture Model is $p(X, Z, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=p(X \mid Z, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda})$

data likelihood
(Gaussian)

correspondence
prob. (Multinomial)

In this model, we use:

- $\boldsymbol{\mu}=\left(\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}\right)$
- $\Sigma=\left(\Sigma_{1}, \ldots, \Sigma_{K}\right)$
- $\left(\boldsymbol{\mu}_{k}, \Sigma_{k}\right)=\boldsymbol{\theta}_{k}$

Gibbs Sampling for GMMs

- The full posterior of the Gaussian Mixture Model is $p(X, Z, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=p(X \mid Z, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda})$
- To apply Gibbs sampling we need to first find closed-form expressions for all full conditionals (prob. distr. of one variable given all others)

Gibbs Sampling for GMMs

- The full posterior of the Gaussian Mixture Model is $p(X, Z, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})=p(X \mid Z, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda})$
- To apply Gibbs sampling we need to first find closed-form expressions for all full conditionals
- These are:

$$
\begin{aligned}
p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}\right) & \propto \pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{k}, \Sigma_{k}\right) \\
p(\boldsymbol{\pi} \mid \mathbf{z}) & =\operatorname{Dir}\left(\left\{\alpha_{k}+\sum_{i=1}^{N} z_{i k}\right\}_{k=1}^{K}\right) \\
p\left(\boldsymbol{\mu}_{k} \mid \Sigma_{k}, Z, X\right) & =\mathcal{N}\left(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{k}, V_{k}\right) \\
p\left(\Sigma_{k} \mid \boldsymbol{\mu}_{k}, Z, X\right) & =\mathcal{I} \mathcal{W}\left(\Sigma_{k} \mid S_{k}, \nu_{k}\right)
\end{aligned}
$$

Gibbs Sampling for GMMs

- The full posterior of the Gaussian Mixture Model is $p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi})=p(X \mid Z, \boldsymbol{\mu}, \Sigma) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$
- To apply Gibbs sampling we need to first find closed-form expressions for all full conditionals
- These are:

$$
\begin{gathered}
p\left(z_{i}=k \mid \mathbf{x}_{i}, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}\right) \propto \pi_{k} \mathcal{N}\left(\mathbf{x}_{i} \mid \boldsymbol{\mu}_{N}, \Sigma_{k}\right) \\
p(\boldsymbol{\pi} \mid \mathbf{z})=\operatorname{Di}\left(\left\{\alpha_{k}+\sum_{i=1}^{N} z_{i k}\right\}_{k=1}^{K}\right) \\
p\left(\boldsymbol{\mu}_{k} \mid \Sigma\right. \\
D\left(\Sigma_{k} \mid \boldsymbol{\mu}_{k}, Z, X\right)=\mathcal{N}\left(\boldsymbol{\mu}_{k} \mid \mathbf{m}_{k}, V_{k}\right) \\
=\operatorname{IW}\left(\Sigma_{k} \mid S_{k}, \nu_{k}\right)
\end{gathered}
$$

A More Efficient Variant

Remember: we have chosen conjugate priors

This means, we can compute posteriors in closed form and marginalize out the model parameters!

Rao-Blackwellization

Instead of computing

$$
p(X, Z, \boldsymbol{\mu}, \mathbf{\Sigma}, \pi, \alpha, \boldsymbol{\lambda})
$$

we compute ("marginalization"):

$$
\iiint p(X, Z, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}, \boldsymbol{\alpha}, \lambda) d \boldsymbol{\mu} d \boldsymbol{\Sigma} d \boldsymbol{\pi}
$$

and sample from the resulting full conditionals.
This is called Rao-Blackwellization. The resulting sampling method is called collapsed Gibbs sampling.

Dirichlet Distribution

- The Dirichlet distribution is defined as:

$$
\begin{gathered}
\operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} \\
0 \leq \pi_{k} \leq 1 \quad \sum_{k=1}^{K} \pi_{k}=1
\end{gathered}
$$

- It is the conjugate prior for the multinomial distribution
- The parameter α can be interpreted as the effective
 number of observations for every state

$$
\alpha_{0}=\sum_{k=1}^{K} \alpha_{k}
$$

Some Examples

$$
\alpha=(2,2,2)
$$

$\alpha=(20,2,2)$
$\alpha=0.10$

- α_{0} controls the strength of the distribution ("peakedness")
- α_{k} control the location of the peak

$$
\alpha=(0.1,0.1,0.1)
$$

Conjugacy

- The Multinomial distribution is defined as:

$$
p\left(\mathbf{z} \mid \pi_{1}, \ldots, \pi_{K}\right)=\prod_{k=1}^{K} \pi_{k}^{z_{k}} \quad \mathbf{z} \in\{0,1\}^{K}
$$

- Conjugacy means:

Conjugacy

- The Multinomial distribution is defined as:

$$
p\left(\mathbf{z} \mid \pi_{1}, \ldots, \pi_{K}\right)=\prod_{k=1}^{K} \pi_{k}^{z_{k}} \quad \mathbf{z} \in\{0,1\}^{K}
$$

- Conjugacy means:
$p\left(\pi_{1}, \ldots, \pi_{K} \mid \mathbf{z}\right)=\eta^{1} p\left(\mathbf{z} \mid \pi_{1}, \ldots, \pi_{K}\right) p\left(\pi_{1}, \ldots, \pi_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right)$
Normalizer

$$
=\operatorname{Dir}\left(\pi_{1}, \ldots, \pi_{k} \mid \alpha_{1}^{\prime}, \ldots, \alpha_{K}^{\prime}\right)
$$

where $\quad \alpha_{k}^{\prime}=\alpha_{k}+z_{k}$

Marginalization

- The normalizer η can be computed as

$$
p\left(Z \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\int p\left(Z \mid \pi_{1}, \ldots, \pi_{K}\right) p\left(\pi_{1}, \ldots, \pi_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right) d \pi
$$

note: $Z=\mathbf{z}_{1}, \ldots \mathbf{z}_{\mathrm{N}}$

- This can also be computed in closed form:

$$
p\left(Z \mid \pi_{1}, \ldots, \pi_{K}\right)=\prod_{i=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{i k}}=\prod_{k=1}^{K} \pi_{k}^{N_{k}}
$$

Marginalization

- The normalizer η can be computed as

$$
p\left(Z \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\int p\left(Z \mid \pi_{1}, \ldots, \pi_{K}\right) p\left(\pi_{1}, \ldots, \pi_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right) d \pi
$$

note: $Z=\mathbf{z}_{1}, \ldots \mathbf{z}_{\mathrm{N}}$

- This can also be computed in closed form:

$$
\begin{gathered}
p\left(Z \mid \pi_{1}, \ldots, \pi_{K}\right)=\prod_{i=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{i k}}=\prod_{k=1}^{K} \pi_{k}^{N_{k}} \\
\Rightarrow p\left(Z \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{0}+N\right)} \prod_{k=1}^{K} \frac{\Gamma\left(\alpha_{k}+N_{k}\right)}{\Gamma\left(\alpha_{k}\right)}
\end{gathered}
$$

The Other Pair

- The same operations can be done for the other likelihood-prior pair:
- Conjugacy: $\quad p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid X)=\eta^{\prime-1} p(X \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda})$

The Other Pair

- The same operations can be done for the other likelihood-prior pair:
- Conjugacy: $\quad p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid X)=\eta^{\prime-1} p(X \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda})$

$$
=\operatorname{NIW}\left(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda}_{N}\right)
$$

(we omit details of how to compute λ_{N})

The Other Pair

- The same operations can be done for the other likelihood-prior pair:
- Conjugacy: $\quad p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid X)=\eta^{\prime-1} p(X \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda})$
- Marginalization:

$$
p(X)=\eta^{\prime}=\iint p(X \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda}) d \boldsymbol{\mu} d \boldsymbol{\Sigma}
$$

The Other Pair

- The same operations can be done for the other likelihood-prior pair:
- Conjugacy: $\quad p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid X)=\eta^{\prime-1} p(X \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda})$
- Marginalization:

$$
\begin{aligned}
p(X) & =\eta^{\prime}=\iint p(X \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \boldsymbol{\lambda}) d \boldsymbol{\mu} d \boldsymbol{\Sigma} \\
& =\pi^{-N D / 2} \frac{\kappa_{0}^{D / 2}\left|S_{0}\right|^{\nu_{0} / 2}}{\kappa_{N}^{D / 2}\left|S_{N}\right|^{\nu_{N} / 2}} \prod_{i=1}^{D} \frac{\Gamma\left(\frac{v_{N}+1-i}{2}\right)}{\Gamma\left(\frac{v_{0}+1-i}{2}\right)}
\end{aligned}
$$

(again, we omit details)

How Can we Use That?

- Our goal is to find the full conditionals:

$$
p\left(\mathbf{z}_{i}=k \mid Z_{-i}, X, \boldsymbol{\alpha}, \boldsymbol{\lambda}\right) \propto p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right) p\left(X \mid \mathbf{z}_{i}=k, Z_{-i}, \boldsymbol{\alpha}, \boldsymbol{\lambda}\right)
$$

How Can we Use That?

- Our goal is to find the full conditionals:

$$
\begin{aligned}
& p\left(\mathbf{z}_{i}=k \mid Z_{-i}, X, \alpha, \boldsymbol{\lambda}\right) \propto p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right) p\left(X \mid \mathbf{z}_{i}=k, Z_{-i}, \boldsymbol{\alpha}, \boldsymbol{\lambda}\right) \\
& \quad=p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right) p\left(\mathbf{x}_{i} \mid X_{-i}, \mathbf{z}_{i}=k, Z_{-i}, \boldsymbol{\lambda}\right) p\left(X_{-i} \mid \mathbf{z}_{j}=k, Z_{-i}, \boldsymbol{\lambda}\right) \\
& \propto p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right) p\left(\mathbf{x}_{i} \mid X_{-i}, \mathbf{z}_{i}=k, Z_{-i}, \boldsymbol{\lambda}\right)
\end{aligned}
$$

How Can we Use That?

- Our goal is to find the full conditionals:

$$
\begin{aligned}
& p\left(\mathbf{z}_{i}=k \mid Z_{-i}, X, \boldsymbol{\alpha}, \boldsymbol{\lambda}\right) \propto p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right) p\left(X \mid \mathbf{z}_{i}=k, Z_{-i}, \boldsymbol{\alpha}, \boldsymbol{\lambda}\right) \\
& \quad=p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right) p\left(\mathbf{x}_{i} \mid X_{-i}, \mathbf{z}_{i}=k, Z_{-i}, \lambda\right) p\left(X_{-i} \mid \mathbf{z}_{j} \leq k, Z_{-i}, \lambda\right)
\end{aligned}
$$

$$
\propto p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right) p\left(\mathbf{x}_{i} \mid X_{-i}, \mathbf{z}_{i}=k, Z_{-i}, \lambda\right)
$$

- We are left with two full conditionals that we can compute in closed form and then sample from the product

The First Term

$$
p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right)=\frac{p(Z \mid \boldsymbol{\alpha})}{p\left(Z_{-i} \mid \boldsymbol{\alpha}\right)} \mathbf{z}_{i}=k
$$

The First Term

$$
p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right)=\frac{p(Z \mid \boldsymbol{\alpha})}{p\left(Z_{-i} \mid \boldsymbol{\alpha}\right)} \mathbf{z}_{i}=k
$$

- We already computed the numerator (see above):

$$
p\left(Z \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{0}+N\right)} \prod_{k=1}^{K} \frac{\Gamma\left(\alpha_{k}+N_{k}\right)}{\Gamma\left(\alpha_{k}\right)}
$$

- The denominator is very similar:

$$
p\left(Z_{-i} \mid \boldsymbol{\alpha}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{0}+N-1\right)} \prod_{k=1}^{K} \frac{\Gamma\left(\alpha_{k}+N_{-i, k}\right)}{\Gamma\left(\alpha_{k}\right)}
$$

The First Term

$$
p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right)=\frac{p(Z \mid \boldsymbol{\alpha})}{p\left(Z_{-i} \mid \boldsymbol{\alpha}\right)} \longleftarrow \mathbf{z}_{i}=k
$$

- We already computed the numerator (see above):

$$
p\left(Z \mid \alpha_{1}, \ldots, \alpha_{K}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{0}+N\right)} \prod_{k=1}^{K} \frac{\Gamma\left(\alpha_{k}+N_{k}\right)}{\Gamma\left(\alpha_{k}\right)}
$$

- The denominator is very similar:

$$
p\left(Z_{-i} \mid \boldsymbol{\alpha}\right)=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{0}+N-1\right)} \prod_{k=1}^{K} \frac{\Gamma\left(\alpha_{k}+N_{-i, k}\right)}{\Gamma\left(\alpha_{k}\right)}
$$

- Result:

$$
p\left(\mathbf{z}_{i}=k \mid Z_{-i}, \boldsymbol{\alpha}\right)=\frac{N_{-i, k}+\alpha_{k}}{N+\alpha_{0}-1}
$$

The Second Term

$$
p\left(\mathbf{x}_{i} \mid X_{-i}, \mathbf{z}_{i}=k, Z_{-i}, \lambda\right)=p\left(\mathbf{x}_{i} \mid X_{-i, k}, \boldsymbol{\lambda}\right)
$$

- We use the same idea here:

$$
p\left(\mathbf{x}_{i} \mid X_{-i, k}, \boldsymbol{\lambda}\right)=\frac{p\left(X_{k} \mid \boldsymbol{\lambda}\right)}{p\left(X_{-i, k} \mid \lambda\right)}
$$

- This can be computed again from marginalization (see above). Again, we omit details.

GMM with Collapsed Gibbs Samlping

```
Algorithm 1 Collapsed Gibbs sampler for a finite Gaussian mixture model.
    Choose an initial z.
    for \(T\) iterations do \(\triangleright\) Gibbs sampling iterations
    for \(i=1\) to \(N\) do
            Remove \(\mathbf{x}_{i}\) 's statistics from component \(z_{i}\).
            for \(k=1\) to \(K\) do
                    Calculate \(P\left(z_{i}=k \mid \mathbf{z}_{i i}, \boldsymbol{\alpha}\right)\) using (25).
                    Calculate \(p\left(\mathbf{x}_{i} \mid \mathcal{X}_{k \backslash i}, \boldsymbol{\beta}\right)\) in (27) using (14) or (15).
                    Calculate \(P\left(z_{i}=k \mid \mathbf{z}_{\backslash i}, \mathcal{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) \propto P\left(z_{i}=k \mid \mathbf{z}_{\backslash i}, \boldsymbol{\alpha}\right) p\left(\mathbf{x}_{i} \mid \mathcal{X}_{k \backslash i}, \boldsymbol{\beta}\right)\).
            end for
            Sample \(k_{\text {new }}\) from \(P\left(z_{i} \mid \mathbf{z}_{\backslash i}, \mathcal{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)\) after normalizing.
            Add \(\mathbf{x}_{i}\) 's statistics to the component \(z_{i}=k_{\text {new }}\).
                            \(\triangleright\) New assignment for \(\mathbf{x}_{i}\)
        end for
    end for
```


Gibbs Sampling for GMMs

- First, we initialize all variables
- Then we iterate over sampling from each conditional in turn
- In the end, we look at μ_{k} and Σ_{k}

How Often Do We Have To Sample?

- Here: after 50 sample rounds the values don't change any more
- In general, the mixing time τ_{ϵ} is related to the eigen gap $\gamma=\lambda_{1}-\lambda_{2}$ of the transition matrix:

$$
\tau_{\epsilon} \leq O\left(\frac{1}{\gamma} \log \frac{n}{\epsilon}\right)
$$

How Can We Get Rid of K?

- We still have the problem that we need the number K of clusters given
- Idea: use the same methodology, but let K go to infinity
- Instead of a Dirichlet distribution, we will then be using a Dirichlet process

Dirichlet Distribution

- The Dirichlet distribution is defined as:

$$
\begin{gathered}
\operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\alpha_{0}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{K}\right)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}-1} \\
0 \leq \pi_{k} \leq 1 \quad \sum_{k=1}^{K} \pi_{k}=1
\end{gathered}
$$

- It is the conjugate prior for the multinomial distribution
- The parameter α can be interpreted as the effective
 number of observations for every state

$$
\alpha_{0}=\sum_{k=1}^{K} \alpha_{k}
$$

Other Properties of the Dirichlet Dist.

- "Agglomerative":

$$
p\left(\mu_{1}, \ldots, \mu_{K}\right)=\operatorname{Dir}\left(\mu_{1}, \ldots, \mu_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right)
$$

$$
\Rightarrow p\left(\mu_{1}+\mu_{2}, \ldots, \mu_{K}\right)=\operatorname{Dir}\left(\mu_{1}+\mu_{2}, \ldots, \mu_{K} \mid \alpha_{1}+\alpha_{2}, \ldots, \alpha_{K}\right)
$$

this also holds for general partitions of $1, \ldots, K$

- "Decimative":

$$
\begin{gathered}
p\left(\mu_{1}, \ldots, \mu_{K}\right)=\operatorname{Dir}\left(\mu_{1}, \ldots, \mu_{K} \mid \alpha_{1}, \ldots, \alpha_{K}\right) \\
\wedge p\left(v_{1}, v_{2}\right)=\operatorname{Dir}\left(v_{1}, v_{2} \mid \alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}\right) \quad \beta_{1}+\beta_{2}=1 \\
\Rightarrow p\left(\mu_{1} v_{1}, \mu_{1} v_{2}, \mu_{2} \ldots, \mu_{K}\right)=\operatorname{Dir}\left(\mu_{1} v_{1}, \mu_{1} v_{2}, \mu_{2}, \ldots, \mu_{K} \mid \alpha_{1} \beta_{1}, \alpha_{1} \beta_{2}, \alpha_{2}, \ldots, \alpha_{K}\right)
\end{gathered}
$$

From Finite to Infinite Dimensions

- Observation: every sample from a Dirichlet distribution represents a distribution over K finite states
- We can generalize this to infinitely many states

$$
\begin{aligned}
1 & \sim \operatorname{Dir}(\mu \mid \alpha) \\
\left(\mu_{1}, \mu_{2}\right) & \sim \operatorname{Dir}\left(\mu_{1}, \mu_{2} \mid \alpha / 2, \alpha / 2\right) \\
\left(\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22}\right) & \sim \operatorname{Dir}\left(\mu_{11}, \mu_{12}, \mu_{21}, \mu_{22} \mid \alpha / 4, \alpha / 4, \alpha / 4, \alpha / 4\right)
\end{aligned}
$$

- The result is a discrete, but infinite distribution

The Dirichlet Process

Definition: A Dirichlet process (DP) is a distribution

 over probability measures G, i.e. $G(\theta) \geq 0$ and $\int G(\boldsymbol{\theta}) d \boldsymbol{\theta}=1$. If for any partition $\left(T_{1}, \ldots, T_{K}\right)$ it holds:$$
\left(G\left(T_{1}\right), \ldots, G\left(T_{K}\right)\right) \sim \operatorname{Dir}\left(\alpha H\left(T_{1}\right), \ldots, \alpha H\left(T_{K}\right)\right)
$$

then G is sampled from a Dirichlet process. Notation: $\quad G \sim \operatorname{DP}(\alpha, H)$
where α is the concentration parameter and H is the base measure

The Dirichlet Process

Definition: A Dirichlet process (DP) is a distribution over probability measures G, i.e. $G(\theta) \geq 0$ and $\int G(\boldsymbol{\theta}) d \boldsymbol{\theta}=1$. If for any partition $\left(T_{1}, \ldots, T_{K}\right)$ it holds:

$$
\left(G\left(T_{1}\right), \ldots, G\left(T_{K}\right)\right) \sim \operatorname{Dir}\left(\alpha H\left(T_{1}\right), \ldots, \alpha H\left(T_{K}\right)\right)
$$

then G is sampled from a Dirichlet process.
Notation: $\quad G \sim \operatorname{DP}(\alpha, H)$
where α is the concentration parameter and H is the base measure

Note: This is not a constructive definition!

Intuitive Interpretation

- Every sample from a Dirichlet distribution is a vector of K positive values that sum up to 1, i.e. the sample itself is a finite distribution
- Accordingly, a sample from a Dirichlet process is an infinite (but still discrete!) distribution

Construction of a Dirichlet Process

- The Dirichlet process is only defined implicitly, i.e. we can test whether a given probability measure is sampled from a DP, but we can not yet construct one.
- A DP can be constructed using the "stickbreaking" analogy:
- imagine a stick of length 1
- we select a random number β between 0 and 1 from a Beta-distribution
- we break the stick at $\pi=\beta$ * length-of-stick
- we repeat this infinitely often

The Stick-Breaking Construction

- formally, we have

$$
\beta_{k} \sim \operatorname{Beta}(1, \alpha) \quad \pi_{k}=\beta_{k} \prod_{l=1}^{k-1}\left(1-\beta_{l}\right)=\beta_{k}\left(1-\sum_{l=1}^{k-1} \pi_{l}\right)
$$

- now we define

$$
G(\boldsymbol{\theta})=\sum_{k=1}^{\infty} \pi_{k} \delta\left(\boldsymbol{\theta}_{k}, \boldsymbol{\theta}\right) \quad \boldsymbol{\theta}_{k} \sim H \quad \text { then: } \quad G \sim \mathrm{DP}(\alpha, H)
$$

The Chinese Restaurant Process

- Consider a restaurant with infinitely many tables
- Everytime a new customer comes in, he sits at an occupied table with probability proportional to the number of people sitting at that table, but he may choose to sit on a new table with decreasing probability as more customers enter the room.

The Chinese Restaurant Process

- It can be shown that the probability for a new customer is

$$
p\left(\overline{\boldsymbol{\theta}}_{N+1}=\boldsymbol{\theta} \mid \overline{\boldsymbol{\theta}}_{1: N}, \alpha, H\right)=\frac{1}{\alpha+N}\left(\alpha H(\boldsymbol{\theta})+\sum_{k=1}^{K} N_{k} \delta\left(\overline{\boldsymbol{\theta}}_{k}, \boldsymbol{\theta}\right)\right)
$$

- This means that currently occupied tables are more likely to get new customers (rich get richer)
- The number of occupied tables grows logarithmically with the number of customers

The DP for Mixture Modeling

- Using the stick-breaking construction, we see that we can extend the mixture model clustering to the situation where K goes to infinity
- The algorithm can be implemented using Gibbs sampling

DPMM with Collapsed Gibbs Sampling

```
Algorithm 2 Collapsed Gibbs sampler for an infinite Gaussian mixture model.
    : Choose an initial z.
    : for \(T\) iterations do
    \(\triangleright\) Gibbs sampling iterations
    3: \(\quad\) for \(i=1\) to \(N\) do
    4: \(\quad\) Remove \(\mathbf{x}_{i}\) 's statistics from component \(z_{i}\).
        for \(k=1\) to \(K\) do \(\quad \triangleright\) Every possible existing component
            Calculate \(P\left(z_{i}=k \mid \mathbf{z}_{\backslash i}, \alpha\right)=\frac{N_{k \backslash i}}{N+\alpha-1}\) as in (34).
            Calculate \(p\left(\mathbf{x}_{i} \mid \mathcal{X}_{k \backslash i}, \boldsymbol{\beta}\right)\) in (35) using (14) or (15).
            Calculate \(P\left(z_{i}=k \mid \mathbf{z}_{\backslash i}, \mathcal{X}, \alpha, \boldsymbol{\beta}\right) \propto P\left(z_{i}=k \mid \mathbf{z}_{\backslash i}, \alpha\right) p\left(\mathbf{x}_{i} \mid \mathcal{X}_{k \backslash i}, \boldsymbol{\beta}\right)\).
        end for
        Calculate \(P\left(z_{i}=k^{*} \mid \mathbf{z}_{\backslash i}, \alpha\right)=\frac{\alpha}{N+\alpha-1}\) as in (34). \(\triangleright\) Consider a new component
        Calculate \(p\left(\mathbf{x}_{i} \mid \boldsymbol{\beta}\right)\) in (36) using (14) or (15).
        Calculate \(P\left(z_{i}=k^{*} \mid \mathbf{z}_{\backslash i}, \mathcal{X}, \alpha, \boldsymbol{\beta}\right) \propto P\left(z_{i}=k^{*} \mid \mathbf{z}_{\backslash i}, \alpha\right) p\left(\mathbf{x}_{i} \mid \boldsymbol{\beta}\right)\).
        Sample \(k_{\text {new }}\) from \(P\left(z_{i} \mid \mathbf{z}_{\backslash i}, \mathcal{X}, \boldsymbol{\alpha}, \boldsymbol{\beta}\right)\) after normalizing.
        Add \(\mathbf{x}_{i}\) 's statistics to the component \(z_{i}=k_{\text {new }}\).
                            \(\triangleright\) New assignment for \(\mathbf{x}_{i}\)
        If any component is empty, remove it and decrease \(K\).
        end for
    end for
```


Summary

- We can use Gibbs sampling to estimate a Gaussian Mixture model for a given data set
- As we are using conjugate priors, we can compute posters in closed form ("Bayesian approach")
- To be more efficient, we use collapsed Gibbs sampling, where model parameters are marginalized out ("Rao-Blackwellization")
- The same idea can be used to extend the GMM for infinite mixtures (K goes to infinity)
- This results in the Dirichlet Process Mixture Model (DPMM)

