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How do we measure similarity?
What is a metric?
Why to learn a metric?
How to learn a metric?
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How do we measure similarity?
Most algorithms that intend to extract knowledge from data, have
to, at some stage, compute distances between data points.
Thus, their performance, often critically, depends on their
definition of similarity between objects.
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What is a metric?
A metric or distance function is a function that defines a
distance between each pair of elements of a set.

Formally, it is a mapping D : X × X → R+ over a vector space X ,
where the following conditions are satisfied ∀xi , xj , xk ∈ X :

1. D(xi , xj) ≥ 0 Non-negativity
2. D(xi , xj) = D(xj , xi) Symmetry
3. D(xi , xj) ≤ D(xi , xk) +D(xk , xj) Triangle inequality
4. D(xi , xj) = 0 ⇔ xi = xj Identity of indiscernibles

If condition 4 is not met, we are referring to a pseudo-metric.
Usually we do not distinguish between metrics and pseudo-metrics.
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Why learn a metric?

“The greatest thing by far is to be a master of metaphor; it is the
one thing that cannot be learned from others; and it is also a sign
of genius, since a good metaphor implies an intuitive perception of

the similarity of the dissimilar.”

Aristotle
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Why learn a metric?

Sometimes, the problem implicitly defines a suitable similarity
measure, e.g. Euclidean distance for depth estimation:

In many interesting problems however, the similarity measure
is not easy to find. It is preferable then to learn the similarity
from data, together with other parameters of the model.
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A family of metrics
A family of metrics over X is defined by computing Euclidean
distances after applying a linear transformation L such that
x → Lx . These metrics compute squared distances as

DL(xi , xj) = ||Lxi − Lxj ||22 (1)

Equation (1) defines a valid metric if L is full rank and a valid
pseudo-metric otherwise.

Intuitively, we want to stretch the dimensions that contain more
information and contract the ones that explain less of the data.
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A family of metrics - An example
Consider two data points x1 = (1, 1) and x2 = (3, 2) that are known to be dissimilar.

The transformation L =

(
3 0
0 1

)
maps the points to x ′

1 = (3, 1) and x ′
2 = (9, 2) as it

weights distances along the first axis 3 times more than the second. The squared
distance of the points changed from (3 − 1)2 + (2 − 1)2 = 5 to (9 − 3)2 + (2 − 1)2 = 37.
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Another view: Mahalanobis metrics
Expanding the squared distances equation:

DL(xi , xj) = ||Lxi − Lxj ||22 = (xi − xj)
T LT L(xi − xj) (2)

This allows us to express squared distances in terms of the square
matrix M = LT L which is guaranteed to be positive semidefinite.
In terms of M we denote squared distances as

DM(xi , xj) = (xi − xj)
T M(xi − xj) (3)

We refer to pseudo-metrics of this form as Mahalanobis metrics.

It is easy to see that by setting M equal to the identity matrix, we
fall back to common Euclidean distances.
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To learn L or M
Thus, we have two options on what to learn, which gives rise to
two approaches in DML:

Learn a linear transformation L of the data
M = LT L is then uniquely defined
Optimization is unconstrained

Learn a Mahalanobis metric M
M defines L up to rotation (does not influence distances)
Constraint: M must be positive semidefinite
But has certain advantages
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Principal Component Analysis [Pearson, 1901]
The main goal of PCA is to find the linear transformation L that
projects the data to a subspace that maximizes the variance.

The variance is expressed with the covariance matrix

C =
1

n

n∑
i=1

(xi − µ)(xi − µ)T (4)

where µ = 1
n
∑n

i=1 xi is the sample mean.

It turns out that C = 1
nXXT (assuming zero-mean X ∈ Rd×n).

The covariance of the projected inputs is then

C′ =
1

n (LX)(LX)T =
1

nLXXT LT =
1

nLCLT (5)
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Principal Component Analysis - Illustration
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In red: The first two eigenvectors of the covariance matrix, scaled
by the square roots of the two largest eigenvalues respectively.
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Principal Component Analysis (cont’d)
We can formulate PCA as an optimization problem:

max
L

Tr(LCLT ) subject to LLT = I (6)

Closed-form solution: Rows of L are the eigenvectors of C.
Eigen-decomposing C is equivalent to computing the SVD of X.

Remarks around PCA
Is an unsupervised method (does not use data labels)
Is widely used for dimensionality reduction: L ∈ Rp×d , p < d
Can be used for:

De-noising : By removing the bottom eigenvectors
Speeding up search of nearest neighbors.
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Linear Discriminant Analysis [Fisher, 1936]
Unlike PCA, LDA is supervised: it uses labels of the inputs.
Goal: Find the L that maximizes the between-class variance
w.r.t. the within-class variance.

Assuming we have m classes, the covariance matrices are

Cb =
1

m

m∑
c=1

µcµ
T
c (7)

Cw =
1

n

m∑
c=1

∑
i∈Ωc

(xi − µc)(xi − µc)
T , (8)

where Ωc is the set of indices of inputs that belong to class c,
µc is the sample mean of class c.
We assume that the data are globally centered.
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Linear Discriminant Analysis - Illustration
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Linear Discriminant Analysis (cont’d)
Corresponding optimization problem:

max
L

Tr( LCbLT

LCwLT ) subject to LLT = I (9)

Closed form solution: Rows of L are the eigenvectors of C−1
w Cb .

Remarks around LDA
Is a supervised method (makes use of label information)
Is widely used as a preprocessing step for pattern classification
Works well when class distributions are Gaussians
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Neighborhood Component Analysis [Goldberger et al., 2004]
Idea: Learn a Mahalanobis metric explicitly to improve k-nn
classification.
Goal: Estimate the L that minimizes the expected LOO error.

Observations

LOO error is highly discontinuous w.r.t. the distance metric. /

In particular, an infinitesimal change in the metric can alter the
neighbour graph and thus change the validation performance.

We need a smoother (or at least continuous) function

Idea 2: Instead of picking a fixed number of k nearest neighbors, select a
single neighbor stochastically and count the expected votes.
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Neighborhood Component Analysis (cont’d)
The reference samples xj for each point xi are drawn from a
softmax pdf:

pij =


exp(−||(Lxi−Lxj ||2))∑

k 6=i exp(−||(Lxi−Lxk ||2))
if i 6= j

0 if i = j
(10)

The fraction of the time that xi will be correctly labeled is:

p+
i =

∑
j∈Ci

pij (11)

The expected error then is

εNCA = 1− 1

n
∑

ij
pijyij where yij =

{
1 if yi = yj

0 otherwise
(12)
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Neighborhood Component Analysis (cont’d)

We don’t have to choose a parameter k ,
The stochastic nature makes εNCA differentiable w.r.t. L ,
But εNCA is not convex → no globally optimal L /

k-nn classification accuracy
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Dimensionality Reduction - PCA vs LDA vs NCA

Dataset
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Large Margin Nearest Neighbor [Weinberger et al., 2005]

Idea: Enforce the maximum margin possible between
intra-class and inter-class samples (as in SVMs)
Target neighbors of ~xi : samples desired to be closest to ~xi
Impostors: samples that violate the margin
Loss function

Pulling target neighbors together

εpull(L) =
∑
i,j i

||L(~xi − ~xj)||2.

Pushing impostors away

εpush(L) =
∑
i,j i

∑
l
(1− yil)[1+ ||L(~xi −~xj)||2 − ||L(~xi −~xl)||2]+

Convex combination
ε(L) = µεpull(L) + (1− µ)εpush(L), µ ∈ [0, 1]
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Large Margin Nearest Neighbor (cont’d)

Supervised Distance Metric Learning for classification
Considers triplets of points at a time.

margin
local neighborhood

Euclidean Metric Mahalanobis Metric

~xi
~xi

~xj~xj

Goal: Find a metric to maximize k-NN accuracy
Advantage: Convex formulation ,
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Metric Learning Variants
Most metric learning algorithms improve by looking at pairs,
triplets or even quadruplets of points.
Many noteworthy algorithms exist:

Relevant Component Analysis (RCA)
Information Theoretic Metric Learning (ITML)
Pseudo-metric Online Batch Learning Algorithm (POLA)
LogDet Exact Gradient Online (LEGO)
BoostMetric (combines boosting and metric learning)
Large Scale Online Learning of Image Similarity Through
Ranking (OASIS)
. . .

This is definitely not an exhaustive list.
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Metric Learning and Kernel Methods
Kernel methods

Express similarity with the Gram matrix K which is n × n.
The feature space Φ is usually high-dimensional (theoretically can
be infinite-dimensional).
The training takes place in the kernel space. The algorithm no
longer sees the raw inputs X .

Metric Learning

Learns a transformation L, which is p × d or a Mahalanobis matrix
M which is d × d , like the covariance matrix C .

Usually p < d → learning also results in dimensionality reduction.

Therefore usually more efficient than kernel methods.

Metric learning can be combined with kernel methods for better results.
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Multidimensional Scaling [Torgerson, 1952]
Inverse Problem: Given dissimilarities, find an embedding.
Goal of MDS is to find coordinates of the data points in some
subspace of Rn such that the given distances are preserved.

A famous problem in cartography:
Find a 2-dimensional map of the
earth, so that distances between
cities are distorted as little as
possible.
Notice that the original distances are
not Euclidean, but measured along
the earth’s surface.
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Multi-dimensional Scaling (cont’d)
We are given an n × n matrix D of distances dij between all pairs
of points. Metric MDS minimizes the distortion of distances in
terms of a residual sum of squares, called the “stress”:

stress(x1, x2, . . . , xn) =

√∑
i,j(dij − ||xi − xj ||)2∑

i,j d2
ij

(13)

so
{x1, x2, . . . , xn}∗ = arg min

{xi}
stress(x1, x2, . . . , xn) (14)

No unique solution. For example, all rotations of a solution
would produce the same distances.

MDS is often used for data visualization.
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Non-rigid 3D Shape Retrieval via LMNN [Chiotellis et al., 2016]

Dataset: SHREC’14 [Pickup et al., 2014]
Synthetic dataset: 300 models
(15 persons × 20 poses)

Real dataset: 400 models
(40 persons × 10 poses)
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Non-rigid 3D Shape Retrieval via LMNN (cont’d)
Retrieval Example

Top left: A query model. Top row: 5 best matches retrieved by the Supervised
Dictionary Learning method [Litman et al., 2014]. Bottom row: 5 best matches
retrieved by the proposed method (CSD+LMNN). Blue indicates that a match
corresponds to the correct class. Red indicates an incorrect class.
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Non-rigid 3D Shape Retrieval via LMNN (cont’d)
Embeddings Visualization

Dataset

SHREC’14
Real

SHREC’14
Synthetic

yf (S) before learning learned L · yf (S)
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