Machine Learning for Computer Vision Winter term 2016

October 17, 2016
Topic: Linear Algebra
Note: This exercise sheet is made to help you refresh some important concepts of Linear Algebra that are relevant for this course. It is not meant to be a homework assignment. Nevertheless being familiar and having these concepts fresh in mind will help you and save you time when studying the topics of the course.

Exercise 1: Warm up

a) What multiple of $a=(1,1,1)$ is closest to the point $b=(2,4,4)$? Find also the closest point to a on the line through b.
b) Prove that the trace of $P=a a^{T} / a^{T} a$ always equals 1 .
c) Show that the length of $A x$ equals the length of $A^{T} x$ if $A A^{T}=A^{T} A$.
d) Which 2×2 matrix projects the x, y plane onto the line $x+y=0$?

Exercise 2: Determinants

a) If a square matrix A has determinant $\frac{1}{2}$, find $\operatorname{det}(2 A), \operatorname{det}(-A), \operatorname{det}\left(A^{2}\right)$ and $\operatorname{det}\left(A^{-1}\right)$.
b) Find the determinants of

$$
A=\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right]\left[\begin{array}{lll}
2 & -1 & 2
\end{array}\right] \quad, \quad U=\left[\begin{array}{llll}
4 & 4 & 8 & 8 \\
0 & 1 & 2 & 2 \\
0 & 0 & 2 & 6 \\
0 & 0 & 0 & 2
\end{array}\right], U^{T} \text { and } U^{-1}
$$

Exercise 3: Eigenvalues and Eigenvectors

a) Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{lll}
3 & 4 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
0 & 0 & 2 \\
0 & 2 & 0 \\
2 & 0 & 0
\end{array}\right] \text {, their traces and their determinants. }
$$

b) Using the characteristic polynomial, find the relationship between the trace, the determinants and the eigenvalues of any square matrix A.
c) Diagonalize the unitary matrix V to reach $V=U \Lambda U^{*}$. All $|\lambda|=1$. $V=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1-i \\ 1+i & -1\end{array}\right]$
d) Suppose T is a 3×3 upper triangular matrix with entries $t_{i j}$. Compare the entries of $T^{*} T$ and $T T^{*}$. Show that if they are equal, then T must be diagonal. (All normal triangular matrices are diagonal)

Exercise 4: Singular Value Decomposition

a) Find the singular values and singular vectors of

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right]
$$

b) Explain how $U \Sigma V^{T}$ expresses A as a sum of r rank-1 matrices: $A=\sigma_{1} u_{1} v_{1}^{T}+\ldots+$ $\sigma_{r} u_{r} v_{r}^{T}$
c) If A changes to $4 A$ what is the change in the SVD?

What is the SVD for A^{T} and for A^{-1} ?
d) Find the SVD and the pseudoinverse of $A=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right] \quad, \quad B=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ and $\quad C=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$

