TU MÜnchen

Fakultät für Informatik
PD Dr. Rudolph Triebel
John Chiotellis

Machine Learning for Computer Vision Winter term 2016

November 25, 2016
K-Means, Expectation-Maximization, Mixture Models

Exercise 1: Expectation-Maximization for GMM

In the standard EM algorithm, we first define the responsibilities γ as

$$
\gamma_{n k}=p\left(z_{n k}=1 \mid x_{n}\right)=\frac{\pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}\left(x_{n} \mid \mu_{j}, \Sigma_{j}\right)} \quad, z_{n k} \in\{0,1\}, \sum_{k=1}^{K} z_{n k}=1
$$

a) Find the optimal means, covariances and mixing coefficients that maximize the data likelihood. How can we interpret the results?
We want to maximize the data likelihood, so as usual we minimize the negative log-likelihood:

$$
\begin{equation*}
-\mathcal{L} \mathcal{L}=-\log p(X \mid \mu, \boldsymbol{\Sigma}, \pi)=-\log \prod_{n} \sum_{k} \pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \Sigma_{k}\right) \tag{1}
\end{equation*}
$$

This time we minimize 3 times independently with respect to the means, the covariances and the mixture coefficients:

$$
\begin{align*}
& \mu_{k}^{*}=\underset{\mu_{k}}{\arg \min }-\mathcal{L} \mathcal{L} \tag{2}\\
& \Sigma_{k}^{*}=\underset{\Sigma_{k}}{\arg \min }-\mathcal{L} \mathcal{L} \tag{3}\\
& \pi_{k}^{*}=\underset{\pi_{k}}{\arg \min }-\mathcal{L} \mathcal{L} \tag{4}
\end{align*}
$$

In the following, to avoid confusion of sums and covariances, we denote covariance Σ_{k} as C_{k}. To simplify some expressions, let us agree on the following notation:

$$
\begin{align*}
\mathcal{N}_{n k} & \equiv \mathcal{N}\left(x_{n} \mid \mu_{k}, C_{k}\right) \tag{5}\\
f_{k} & \equiv\left((2 \pi)^{d}\left|C_{k}\right|\right)^{-1 / 2} \tag{6}\\
D_{n k} & \equiv\left(x_{n}-\mu_{k}\right)^{T} C_{k}^{-1}\left(x_{n}-\mu_{k}\right) \tag{7}
\end{align*}
$$

Thus, we have:

$$
\begin{aligned}
-\mathcal{L} \mathcal{L} & =-\sum_{n} \log \sum_{k} \pi_{k} \mathcal{N}_{n k} \\
& =-\sum_{n} \log \sum_{k} \pi_{k} f_{k} \exp \left(-\frac{1}{2} D_{n k}\right)
\end{aligned}
$$

Solving for the means:

$$
\begin{align*}
\frac{\partial \mathcal{L} \mathcal{L}}{\partial \mu_{k}} & =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \frac{\partial \sum_{k} \pi_{k} f_{k} \exp \left(-\frac{1}{2} D_{n k}\right)}{\partial \mu_{k}} \tag{8}\\
& =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \pi_{k} f_{k} \frac{\partial \exp \left(-\frac{1}{2} D_{n k}\right)}{\partial \mu_{k}} \tag{9}\\
& =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \pi_{k} f_{k} \exp \left(-\frac{1}{2} D_{n k}\right) C_{k}^{-1}\left(x_{n}-\mu_{k}\right) \tag{10}\\
& =\sum_{n} \frac{\pi_{k} \mathcal{N}_{n k}}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} C_{k}^{-1}\left(x_{n}-\mu_{k}\right) \tag{11}\\
& =\sum_{n} \gamma_{n k} C_{k}^{-1}\left(x_{n}-\mu_{k}\right) \tag{12}
\end{align*}
$$

Setting $-\frac{\partial \mathcal{L} \mathcal{L}}{\partial \mu_{k}} \stackrel{!}{=} 0$ gives us:

$$
\begin{align*}
\sum_{n} \gamma_{n k} C_{k}^{-1} \mu_{k} & =\sum_{n} \gamma_{n k} C_{k}^{-1} x_{n} \tag{14}\\
C_{k}^{-1} \mu_{k} \sum_{n} \gamma_{n k} & =C_{k}^{-1} \sum_{n} \gamma_{n k} x_{n} \tag{15}\\
C_{k}^{-1} \mu_{k} \sum_{n}^{n} \gamma_{n k} & =C_{k}^{-1} \sum_{n} \gamma_{n k} x_{n} \tag{16}\\
\mu_{k} \sum_{n} \gamma_{n k} & =\sum_{n} \gamma_{n k} x_{n} \tag{17}\\
\mu_{k} & =\frac{\sum_{n} \gamma_{n k} x_{n}}{\sum_{n} \gamma_{n k}} \tag{18}
\end{align*}
$$

Solving for the covariances:

$$
\begin{align*}
\frac{\partial \mathcal{L} \mathcal{L}}{\partial C_{k}} & =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \frac{\partial \sum_{k} \pi_{k} f_{k} \exp \left(-\frac{1}{2} D_{n k}\right)}{\partial C_{k}} \tag{19}\\
& =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \pi_{k} \frac{\partial f_{k} \exp \left(-\frac{1}{2} D_{n k}\right)}{\partial C_{k}} \tag{20}\\
& =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \pi_{k}\left(\frac{\partial f_{k}}{\partial C_{k}} \exp \left(-\frac{1}{2} D_{n k}\right)+f_{k} \frac{\partial \exp \left(-\frac{1}{2} D_{n k}\right)}{\partial C_{k}}\right) \tag{21}\\
& =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \pi_{k}\left(\left(-\frac{1}{2} f_{k} C_{k}^{-1}\right) \exp \left(-\frac{1}{2} D_{n k}\right)+\frac{1}{2} f_{k} \exp \left(-\frac{1}{2} D_{n k}\right) C_{k}^{-1}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T} C_{k}^{-1}\right) \\
& =\left(-\frac{1}{2}\right) \sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \pi_{k} f_{k} \exp \left(-\frac{1}{2} D_{n k}\right)\left(C_{k}^{-1}-C_{k}^{-1}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T} C_{k}^{-1}\right) \tag{22}\\
& =\left(-\frac{1}{2}\right) \sum_{n} \gamma_{n k}\left(C_{k}^{-1}-C_{k}^{-1}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T} C_{k}^{-1}\right) \tag{23}
\end{align*}
$$

Here, we used the derivative of the determinant as follows:

$$
\begin{align*}
\frac{\partial f_{k}}{\partial C_{k}} & =\frac{\partial\left((2 \pi)^{d}\left|C_{k}\right|\right)^{-\frac{1}{2}}}{\partial C_{k}}=\left((2 \pi)^{d}\right)^{-\frac{1}{2}} \frac{\partial\left(\left|C_{k}\right|\right)^{-\frac{1}{2}}}{\partial C_{k}} \tag{26}\\
& =\left((2 \pi)^{d}\right)^{-\frac{1}{2}}\left(-\frac{1}{2}\right)\left|C_{k}\right|^{-\frac{3}{2}} \frac{\partial\left(\left|C_{k}\right|\right)}{\partial C_{k}}=\left((2 \pi)^{d}\right)^{-\frac{1}{2}}\left(-\frac{1}{2}\right)\left|C_{k}\right|^{-\frac{3}{2}}\left|C_{k}\right|\left(C_{k}^{-1}\right)^{T} \tag{27}\\
& =\left(-\frac{1}{2}\right)\left((2 \pi)^{d}\right)^{-\frac{1}{2}}\left|C_{k}\right|^{-\frac{1}{2}} C_{k}^{-1}=-\frac{1}{2} f_{k} C_{k}^{-1} \tag{28}
\end{align*}
$$

and the derivative of the Mahalanobis distance as:

$$
\begin{equation*}
\frac{\partial x^{T} C^{-1} x}{\partial C}=-C^{-T} x x^{T} C^{-T}=-C^{-1} x x^{T} C^{-1} \tag{29}
\end{equation*}
$$

Setting $-\frac{\partial \mathcal{L} \mathcal{L}}{\partial C_{k}} \stackrel{!}{=} 0$ gives us:

$$
\begin{align*}
\sum_{n} \gamma_{n k} C_{k}^{-1} & =\sum_{n} \gamma_{n k} C_{k}^{-1}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T} C_{k}^{-1} \tag{30}\\
C_{k}^{-1} \sum_{n} \gamma_{n k} & =C_{k}^{-1} \sum_{n} \gamma_{n k}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T} C_{k}^{-1} \tag{31}\\
\sum_{n} \gamma_{n k} & =\sum_{n} \gamma_{n k}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T} C_{k}^{-1} \tag{32}\\
C_{k} & =\frac{\sum_{n} \gamma_{n k}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T}}{\sum_{n} \gamma_{n k}} \tag{33}
\end{align*}
$$

Solving for the mixture coefficients: Here we must take into account that $\sum_{k} \pi_{k}=1$. We enforce this constraint with a Lagrange multiplier. Our objective then becomes:

$$
\begin{equation*}
\mathcal{L} \mathcal{L}^{\prime}=\mathcal{L} \mathcal{L}+\lambda\left(\sum_{k} \pi_{k}-1\right) \tag{34}
\end{equation*}
$$

where $\lambda<0$.
Deriving w.r.t. π_{k}, we get

$$
\begin{align*}
\frac{\partial \mathcal{L} \mathcal{L}^{\prime}}{\partial \pi_{k}} & =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \frac{\partial \sum_{k} \pi_{k} \mathcal{N}_{n k}}{\partial \pi_{k}}+\lambda \tag{35}\\
& =\sum_{n} \frac{1}{\sum_{j} \pi_{j} \mathcal{N}_{n j}} \mathcal{N}_{n k}+\lambda \tag{36}\\
& =\sum_{n} \frac{\gamma_{n k}}{\pi_{k}}+\lambda \tag{37}
\end{align*}
$$

Setting equal to zero and solving for λ, we get

$$
\begin{align*}
\lambda & =-\sum_{n} \frac{\gamma_{n k}}{\pi_{k}} \tag{38}\\
\lambda \pi_{k} & =-\sum_{n} \gamma_{n k} \tag{39}\\
\sum_{k} \lambda \pi_{k} & =-\sum_{k} \sum_{n} \gamma_{n k} \tag{40}\\
\lambda & =-N \tag{41}
\end{align*}
$$

Now we can plug this back to the objective and actually solve for π_{k} :

$$
\begin{align*}
& \frac{\partial \mathcal{L} \mathcal{L}^{\prime}}{\partial \pi_{k}}=\sum_{n} \frac{\gamma_{n k}}{\pi_{k}}-N \stackrel{!}{=} 0 \tag{42}\\
& \frac{1}{\pi_{k}} \sum_{n} \gamma_{n k}=N \tag{43}\\
& \pi_{k}=\frac{\sum_{n} \gamma_{n k}}{N}=\frac{N_{k}}{N} \tag{44}
\end{align*}
$$

We can interpret these results as weighted averages of means and covariances, the weights corresponding to the responsibilities $\gamma_{n k}$. The mixture coefficients π_{k} are simply the ratio of data points explained by each component.
b) Define the complete-data-log-likelihood. What is the difference to the standard log-likelihood?
Assuming we observe not only the data but also the binary latent variables Z we define the complete data likelihood as:

$$
\begin{equation*}
p(X, Z \mid \pi, \mu, C)=\prod_{n} p\left(z_{n} \mid \pi\right) p\left(x_{n} \mid z_{n}, \mu, C\right) \tag{45}
\end{equation*}
$$

where $\quad p\left(z_{n} \mid \pi\right)=\prod_{k} \pi_{k}^{z_{n k}} \quad$ and $\quad p\left(x_{n} \mid z_{n}, \mu, C\right)=\prod_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, C_{k}\right)^{z_{n k}}$.
Remember that $\sum_{k} z_{n k}=1$.
Since now we only have products, we can more easily compute the logarithm:

$$
\begin{equation*}
\log p(X, Z \mid \pi, \mu, C)=\sum_{n} \sum_{k} z_{n k}\left(\log \pi_{k}+\log \mathcal{N}\left(x_{n} \mid \mu_{k}, C_{k}\right)\right) \tag{46}
\end{equation*}
$$

Of course in practice, the latent variables are not known, so we maximize the expectation:

$$
\begin{equation*}
\mathbb{E}[\log p(X, Z \mid \pi, \mu, C)]=\sum_{n} \sum_{k} \mathbb{E}\left[z_{n k}\right]\left(\log \pi_{k}+\log \mathcal{N}\left(x_{n} \mid \mu_{k}, C_{k}\right)\right) \tag{47}
\end{equation*}
$$

where we know that $\mathbb{E}\left[z_{n k}\right]=\gamma_{n k}$.
The theory says that the log-marginal is also maximized implicitly!

Exercise 2: K-Means Compression and EM for GMM

See code.

