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0.1 Eigenvalues and Eigenvectors

They express the essential information contained in a square matrix.
Let A be an n × n matrix. A has n eigenvalues λi and n corresponding eigenvectors ~vi.
What is unique about the eigenvectors of a matrix in contrast to other vectors is that the
following holds:

A~vi = λi~vi (1)

In words, this means that when we apply the linear transformation A to an eigenvec-
tor of A, we get back a multiple of the eigenvector. Geometrically speaking, all we do by
applying A to ~vi is to scale ~vi by some number λi. This number is nothing else but the
corresponding eigenvalue of ~vi.

To find the eigenvalues and eigenvectors of a matrix, we have to bring all parts of
equation (1) to the left side:

(A− λiI)~vi = 0 (2)

where I is the n× n Identity matrix. Now, we know that for the left part to be zero,
either ~vi has to be the zero vector (which is not so interesting...) or the determinant of
(A− λiI) has to be zero:

det(A− λiI) = 0 (3)

This gives us a polynomial of λi of order n:

p(λi) = αnλ
n
i + αn−1λ

n−1
i + . . .+ α1λi + α0 (4)

The roots of this characteristic polynomial are the eigenvalues of A. Therefore the
eigenvalues can be either real or complex numbers. Now we can compute the eigenvec-
tors. For every λi that we found, we solve equation (2) (a system of n equations and n
unknowns) and this gives us the eigenvectors ~vi.

Note that an eigenvalue may appear more than one time as a root of the characteri-
stic polynomial. The algebraic multiplicity of an eigenvalue is the number of times it
appears as a root of the characteristic polynomial (4). The geometric multiplicity of
an eigenvalue is the number of (distinct) corresponding eigenvectors it has.
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0.2 Eigendecomposition

Eigendecomposition is the rewriting of A as a product (factorization) of matrices of the
eigenvectors and eigenvalues:

A = V ΛV −1 (5)

where V is a matrix with the eigenvectors ~vi stacked as columns:

V =
[
~v1 ~v2 . . . ~vn

]
(6)

and Λ is a diagonal matrix with the eigenvalues in corresponding order:

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

... . . . 0
0 . . . 0 λn

 (7)

In order for A to be “eigendecomposable”, it has to be square and diagonalizable.

0.3 Matrix Properties Definitions

Having said something about eigenvalues and eigenvectors, it is useful to have the follo-
wing definitions for matrices:

Diagonalizable A square matrix A is diagonalizable when the algebraic and geome-
tric multiplicities of each eigenvalue of A coincide.

Invertible or Non-singular A square matrix A is invertible when it has full rank:
rank(A) = n or equivalently when its determinant is non-zero: det(A) 6= 0.

Normal A square matrix A is normal if AA∗ = A∗A, where A∗ is the conjugate
transpose of A.

Unitary A square matrix A is unitary if it is normal and also the product with the
conjugate transpose gives the Identity: AA∗ = A∗A = I. In other words the conjugate
transpose is also the inverse: A∗ = A−1.

Orthogonal A square matrix A is orthogonal if it is unitary and real: AAT = ATA =
I. (It is unfortunate that the name of these matrices is not orthonormal.)

Hermitian or Self-adjoint A square matrix A is hermitian if A = A∗.

Symmetric A square matrix A is symmetric if A = AT , namely hermitian and real.

Skew-Hermitian A square matrix A is skew-hermitian if A∗ = −A.

Skew-Symmetric A square matrix A is skew-symmetric if AT = −A.
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Let us summarize these definitions in a table:

Property Name (A ∈ Cn×n) Name (A ∈ Rn×n)
µA(λi) = γA(λi),∀i diagonalizable diagonalizable
det(A) 6= 0 invertible invertible
AA∗ = A∗A normal normal
AA∗ = A∗A = I unitary orthogonal
A = A∗ hermitian symmetric
A = −A∗ skew-hermitian skew-symmetric

0.4 Singular Value Decomposition

Singular Value Decomposition or SVD is the generalization of eigendecomposition to any
m × n matrix. In particular we can decompose any m × n matrix A to 3 other matrices
as follows:

A = UDV ∗ (8)

where U is anm×m unitary matrix,D is anm×n rectangular diagonal matrix and V is
an n×n unitary matrix. Equivalently to the eigendecomposition naming conventions, the
values σi in the diagonal of D are called singular values and the column vectors of U and
V are called the left- and right-singular vectors respectively. In contrast to eigenvalues,
the singular values can only be real and non-negative.
A connection to the eigenvalues can be made by noticing that the singular values of the
m× n matrix A are equal to the positive square roots of the non-zero eigenvalues of the
n × n matrix A∗A (and AA∗). The eigenvectors of AA∗ are the columns of U and the
eigenvectors of A∗A are the columns of V .

0.5 Pseudoinverse

One of the most common computations needed in Machine Learning and particularly in
Regression, is the computation of the (Moore-Penrose) pseudoinverse. It is fairly easy to
obtain the pseudoinverse of a matrix once we have its Singular Value Decomposition:

A+ = (UDV ∗)+ = V D+U∗ (9)

where D+ is the pseudo-inverse of D, also diagonal and with entries equal to the re-
ciprocals of the non-zero singular values:

σ+
i =

{
1
σi

if σi 6= 0

0 otherwise
(10)
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