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Recap: What is Learning?

e problem (“classification”)
e data (images + labels)

e model (linear regression)
e cost function

e optimization algorithm
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Perceptron

e The human brain (10'° cells) is the archetype of neural networks

Dendrites
Y
Synapses\ ® |- -
_ ol
o > Axon s "
Out
Neuron scheme
Inputs Weighis Adder Activation Output
U, s— W, -»> a4 function
U, me—p W, =
U, — _wn -

Neuron model

http://home.agh.edu.pl/~vlisi/Al/intro/
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http://home.agh.edu.pl/~vlsi/AI/intro/
http://home.agh.edu.pl/~vlsi/AI/intro/

Neuron Activations

e Different type of activation functions

Threshold activation (binary classifier)

Step Function

Inputs Weighis Adder Activation Output
U, s— W, i : function
¥
le q WE ﬁ.
U, — Wn

Neuron model
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Neuron Activations

e Different type of activation functions
Sigmoid activation

Sigmoid

1
14 exp®

Y

Inputs Weighis Adder Activation Output
' : function

U, — Wi + :

Uy se— W, =

U, — Wn *-

Neuron model
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Neuron Activations

e Different type of activation functions
rectified Linear Unit activation

relLU
114

y = max(0, ¢)

-10 B 5 10

Inputs Weighis Adder Activation Output
U, s— W, i : function
¥
Ll ) llllllllllllh \ﬂfz lllllllllllllllllllll'.p
U, — Wn

Neuron model
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Simple Neural Network

. . hidden layers

) —
Y g output layer
input layer - ‘é‘-ﬁ*‘f" v"a'
CR I
AR

Es

e good reference: neuralnetworksanddeeplearning.com
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http://neuralnetworksanddeeplearning.com

Simple Neural Network

Q. Why is it good?
TS e * inspired by brain

* highly non-linear — function approximator

e shown to solve complicated tasks
successfully

* “self-organizing map” / parameters are
learned

e data driven
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Simple Neural Network

Qe Why is it bad?
< output layer

* highly non-linear

® high degree of freedom

¢ “self-organizing map”
— parameters are learned

e data driven
e not much theory yet
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Back Propagation

e Define a cost function
prediction

4’ ground truth

C(w,b) = 2%.-1, > lly(z) — 52

e Goal: Find global minimum

0C
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Back Propagation

e Define a cost function
prediction

4’ ground truth

C(w,b) = 2%.-1, > lly(z) — 52

e Goal: Find global minimum

0C

Gradient Descent
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Back Propagation

e Define a cost function
prediction

47 ground truth

C(w,b) = 2%.-1, > lly(z) — Eﬁ2

e Minimize the error (derivative of the cost) with gradient descent
Gradient descent update rule:

,. oC
oC
by —b, = by — no’
LR T,

Learning rate
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Back Propagation

e Define a cost function
prediction

47 ground truth

C(w,b) = ;R > lly(z) — 52

® Propagate the error through layers

e Take the derivative of the output of the layer w.r.t the input of the
layer

e Apply update rule for the parameters
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Convolutional Neural Networks

1 e Ca: % maps 1601 010

1: fealue maps 2d: [ maps 160 5a5
INFUT
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Convolutional Neural Networks

1nput neurons

e S ——— first hidden layer
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Convolutional Neural Networks

input neurons
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Convolutional Neural Networks

1 e Ca: % maps 1601 010
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Convolutional Neural Networks

AlexNet

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton.

"Imagenet classification with deep convolutional neural
networks.”

Advances in neural information processing systems. 2012.
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Convolutional Neural Networks

Convolutional networks take advantage of the properties of natural signals:

* |ocal connections e shared weights
I .
e pooling
e
- |
N - =» Person
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FlowNet: Learning Optical Flow
with Convolutional Networks

Philipp Fischer, Alexey Dosovitskiy, Eddy llg, Thomas Brox
Philip Hausser, Caner Hazirbas, Vladimir Golkov, Daniel Cremers, Patrick van der Smagt

]

;

convolutional
network




Flying Chairs
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Data Augmentation

Generated

Augmented

« translation, rotation, scaling, additive Gaussian noise
e changes in brightness, contrast, gamma and colour
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FlowNetSimple

FlowMetSimple

- IZzz--=s
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*. upsampled
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FlowNetSimple - Flying Chairs

FlowMetSimple
: g p——
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FlowNetSimple - Sintel

FlowMetSimple

EPE: 1.06

>
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FlowNetSimple + Variational Smoothing

EPE:0.89 EPE:-0.42

-

L&

EPE: 8.L1 EPE: 6.54
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FlowNet: Learning Optical Flow
with Convolutional Networks

P. Fischer, A. Dosovitskiy, E. llg, P. Rausser, L. Hazirbas, V. Golkov
P.v.d. omagt, D. Gremers, T. Brox

FowNet:
Learning Uptical FHlow
with Convolutional Networks
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