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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

Discriminant 
Function

Discriminative 
Model

estimates the 

   posterior              

for each class

Generative 
Model

est. the likelihoods 

             and use Bayes  

rule for the post.

learning from a training 
data set, inference on 

the test data

no prob. formulation, 

learns a function from 

objects       to labels    . 
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Mathematical Formulation (Rep.)

Suppose we are given a set      of objects and a set o 
of object categories (classes). In the learning task we 
search for a mapping                        such that similar 
elements in       are mapped to similar elements in     . 

Difference between regression and classification: 

• In regression,      is continuous, in classification it is 
discrete 

• Regression learns a function, classification usually 
learns class labels 

For now we will treat regression
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Basis Functions

In principal, the elements of      can be anything (e.g. real 
numbers, graphs, 3D objects). To be able to treat these 
objects mathematically we need functions        that map 
from       to        . We call these the basis functions. 

We can also interpret the basis functions as functions 
that extract features from the input data. 

Features reflect the properties of the objects (width, 
height, etc.).
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Simple Example: Linear Regression

• Assume:                                                  (identity) 

• Given:      data points 

• Goal:        predict the value t of a new example x 
• Parametric  formulation:

x1               x2          x3                    x4             x5

t5 

               
t3 

          
t4                    

t1             

t2
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Linear Regression

To evaluate the function y, we need an error function: 

We search for parameters         s.th.              is minimal: 

Using vector notation:

“Sum of 
Squared Errors”
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Polynomial Regression

Now we have: 

Given:  data points  

   

Model 
Complexity

Data Set 
Size
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Polynomial Regression

We define:  

And obtain: 

   

Outer 
Product
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Polynomial Regression

We define:  

And obtain: 
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Polynomial Regression

We define:  

And obtain:
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Polynomial Regression

Thus, we have:  

where 

It follows:

“Pseudoinverse”
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Computing the Pseudoinverse

Mathematically, a pseudoinverse      exists for 
every matrix   .  

However: If    is (close to) singular the direct 
solution of    is numerically unstable. 

Therefore: Singular Value Decomposition (SVD) is 
used:                  where 

• matrices U and V are orthogonal matrices 

•D is a diagonal matrix 

Then:                         where       contains the 

reciprocal of all non-zero elements of D 
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A Simple Example
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Varying the Sample Size
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The Resulting Model Parameters
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Other Basis Functions

Other basis functions are possible: 

• Gaussian basis function: 

• Sigmoidal basis function:  

   

where  

   

mean val  

   
scale  

   

where  

   In both cases a set of mean values is required. These 
define the locations of the basis functions. 
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Gaussian Basis Functions
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Sigmoidal Basis Functions
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Observations

• The higher the model complexity grows, the better 
is the fit to the data 

• If the model complexity is too high, all data points 
are explained well, but the resulting model oscillates 
very much. It can not generalize well. 
This is called overfitting. 

• By increasing the size of the data set (number of 
samples), we obtain a better fit of the model 

• More complex models have larger parameters 

Problem: How can we find a good model complexity   
for a given data set with a fixed size?  
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Regularization

We observed that complex models yield large 
parameters, leading to oscillation. Idea: 

Minimize the error function and the magnitude of the 
parameters simultaneously 

We do this by adding a regularization term : 

where λ rules the influence of the regularization.
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Regularization

As above, we set the derivative to zero: 

With regularization, we can find a complex model for a 
small data set. However, the problem now is to find an 

appropriate regularization coefficient λ.
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Regularized Results
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The Problem from a Different View

Assume that y is affected by Gaussian noise : 

                                       where 

Thus, we have  
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Maximum Likelihood Estimation

Aim: we want to find the w that maximizes p. 
                        is the likelihood of the measured data 
given a model. Intuitively: 

Find parameters w that maximize the probability of 

measuring the already measured data t. 
   

We can think of this as fitting a model w to the data t. 
Note: σ is also part of the model and can be estimated.  

For now, we assume σ is known.   

“Maximum Likelihood Estimation”
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Maximum Likelihood Estimation

Given data points: 

Assumption: points are drawn independently from p:

where: Instead of maximizing p we 
can also maximize its 

logarithm (monotonicity of 
the logarithm)
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Maximum Likelihood Estimation

Constant  for all w Is equal to       

The parameters that maximize the likelihood are equal 
to the minimum of the sum of squared errors
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Maximum Likelihood Estimation
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize 

the data likelihood. Now, we assume a Gaussian prior: 

Using this, we can compute the posterior (Bayes):

“Maximum A-Posteriori Estimation (MAP)”

Likelihood Prior Posterior 
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize 

the data likelihood. Now, we assume a Gaussian prior: 

Using this, we can compute the posterior (Bayes): 

strictly: 

but the denominator is independent of w and we want 

to maximize p.
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Maximum A-Posteriori Estimation

This is equal to the regularized error minimization. 

The MAP Estimate corresponds to a regularized 

error minimization where λ = (σ1 / σ2 )2  
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Summary

• Regression is a method to find a mathematical model 
(function) for a given data set 

• Regression can be done by minimizing the sum of 
squared (SSE) errors, i.e. the distances to the data 

• Maximum-likelihood estimation uses a probabilis-tic 
representation to fit a model into noisy data 

• Maximum-likelihood under Gaussian noise is 
equivalent to SSE regression.  

• Maximum-a-posteriori (MAP) estimation assumes a 
(Gaussian) prior on the model parameters 

• MAP is solved by regularized regression 

•   
32
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Bayesian Linear Regression

• Using MAP, we can find optimal model parameters, 
but for practical applications two questions arise: 

• What happens in the case of sequential data, i.e. the 
data points are observed subsequently? 

• Can we model the probability of measuring a new 
data point, given all old data points? This is called 
the predictive distribution:

Old data Old targets New data New target 
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When Bayes Meets Gauß

If we are given this: 

                  I. 

                  II. 

Then it follows (properties of Gaussians): 

     III. 

     IV. 

where
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Sequential Data

Given: Prior mean       and covariance      , noise 
covariance  

1. Set 

2.Observe data point  

3. Formulate the likelihood                      as a function of w  
(= Gaussian with mean                and covariance    ) 

4.Multiply the likelihood with the prior                     and 
normalize (= Gaussian with             and          ) 

5. This results in a new prior 

6.Go back to 1. if there are still data points available
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(Bayes)

(Markov)

(Tot. prob.)

(Markov)

(Markov)
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Comparison: the Standard Bayes Filter
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(Bayes)

(Markov)
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Comparison: the Standard Bayes Filter

Note: Different Notation!
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A Simple Example

Our aim is to fit a straight line into a set of data points. 

Assume we have: 

Basis functions are equal to identity 

Prior mean is zero, prior covariance      is       , noise 
variance is 

Ground truth is                                        where 

Data points are sampled from ground truth 

Thus: 

We want to recover      and      from the sequentially 
incoming data points

39
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Bayesian Line Fitting

No data points observed

Prior Data Space

“Hough Space”
Line examples drawn 

from the prior
From: C.M. Bishop
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Bayesian Line Fitting

One data point observed

Prior Data SpaceLikelihood

“Hough Space”

Ground Truth

Line examples drawn 
from the prior

From: C.M. Bishop
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Bayesian Line Fitting

Two data points observed

Prior Data SpaceLikelihood

“Hough Space”
Line examples drawn 

from the prior
From: C.M. Bishop
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Bayesian Line Fitting

20 data points observed

Prior Data SpaceLikelihood

“Hough Space”
Line examples drawn 

from the prior ¸
From: C.M. Bishop
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The Predictive Distribution

We obtain the predictive distribution by integrating over 
all possible model parameters: 

As before the posterior is prop. to the likelihood times the 
prior. But now, we don’t maximize. The posterior can be 
computed analytically, as the prior is Gaussian. 

                                          where

Old data posterior New data likelihood 

Prior cov Prior mean 
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The Predictive Distribution

Using formula III. from above (linear Gaussian),  

                                          

                   where 
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The Predictive Distribution (2)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 1 data point

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution
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Predictive Distribution (3)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 2 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution
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Predictive Distribution (4)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 4 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution
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Predictive Distribution (5)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 25 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution
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Summary

• Regression can be expressed as a least-squares 
problem 

• To avoid overfitting, we need to introduce a 

regularisation term with an additional parameter λ 
• Regression without regularisation is equivalent to 

Maximum Likelihood Estimation 

• Regression with regularisation is Maximum A-Posteriori 

• Bayesian Linear Regression operates on sequential data 
and provides the predictive distribution 

• When using Gaussian priors (and Gaussian noise), all 
computations can be done analytically
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