Repetition, Consolidation, and Applications

Topics Covered So Far

- Clustering and Expectation Maximization
- Kernel Methods and GPs
- Boosting and Bagging
- Graphical Models
- Hidden Markov Models
- Deep Learning
- Metric Learning

3. Clustering

Motivation

- Supervised learning is good for interaction with humans, but labels from a supervisor are sometimes hard to obtain
- Clustering is unsupervised learning, i.e. it tries to learn only from the data
- Main idea: find a similarity measure and group similar data objects together
- Clustering is a very old research field, many approaches have been suggested
- Main problem in most methods: how to find a good number of clusters

Categories of Learning

Learning

Unsupervised Learning

clustering, density estimation

Supervised Learning

learning from a training data set, inference on the test data

Reinforcement Learning

no supervision, but a reward function

In unsupervised learning, there is no ground truth information given.

Most Unsupervised Learning methods are based on **Clustering**.

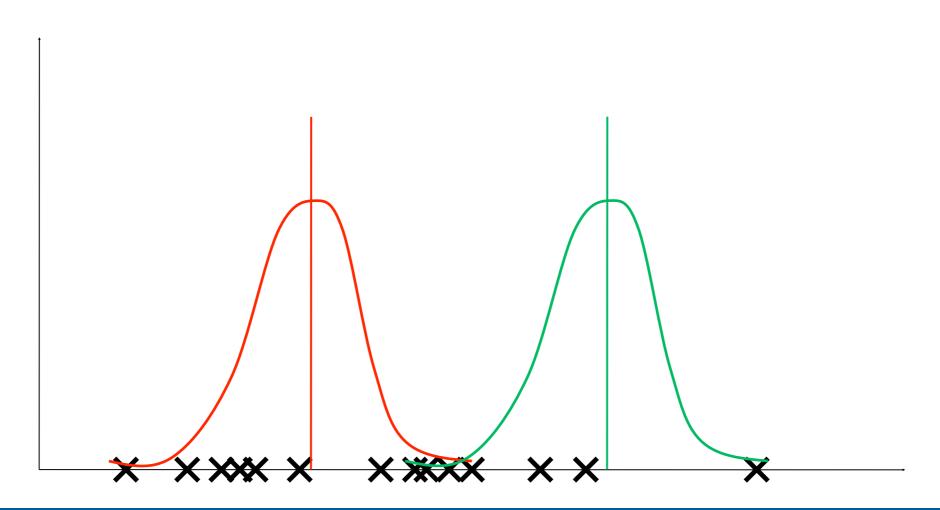
- Given: data set $\{x_1, \dots, x_N\}$, number of clusters K
- Goal: find cluster centers $\{\mu_1,\ldots,\mu_K\}$ so that

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

is minimal, where $r_{nk}=1$ if \mathbf{x}_n is assigned to $\boldsymbol{\mu}_k$

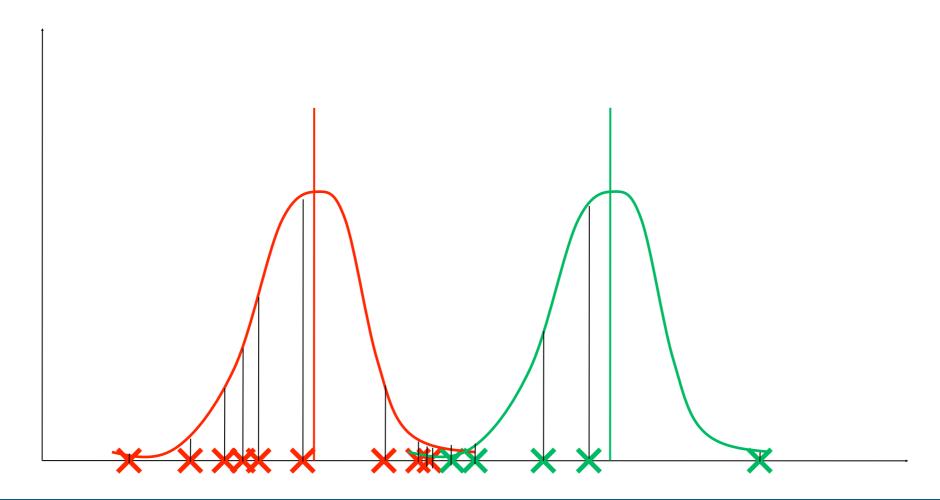
- Idea: compute r_{nk} and μ_k iteratively
- Start with some values for the cluster centers
- Find optimal assignments r_{nk}
- Update cluster centers using these assignments
- Repeat until assignments or centers don't change

Initialize cluster means: $\{oldsymbol{\mu}_1,\dots,oldsymbol{\mu}_K\}$



Find optimal assignments:

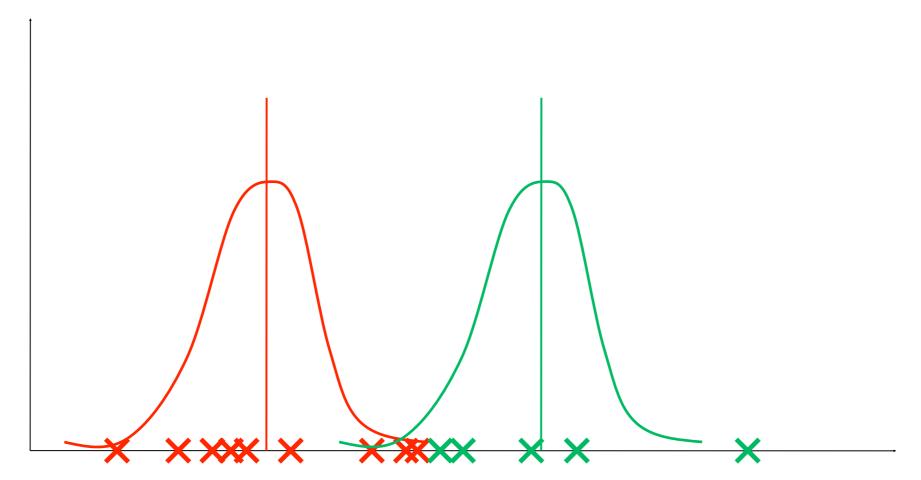
$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\| \\ 0 & \text{otherwise} \end{cases}$$



Find new optimal means:

$$\frac{\partial J}{\partial \boldsymbol{\mu}_k} = 2\sum_{n=1}^N r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) \stackrel{!}{=} 0$$

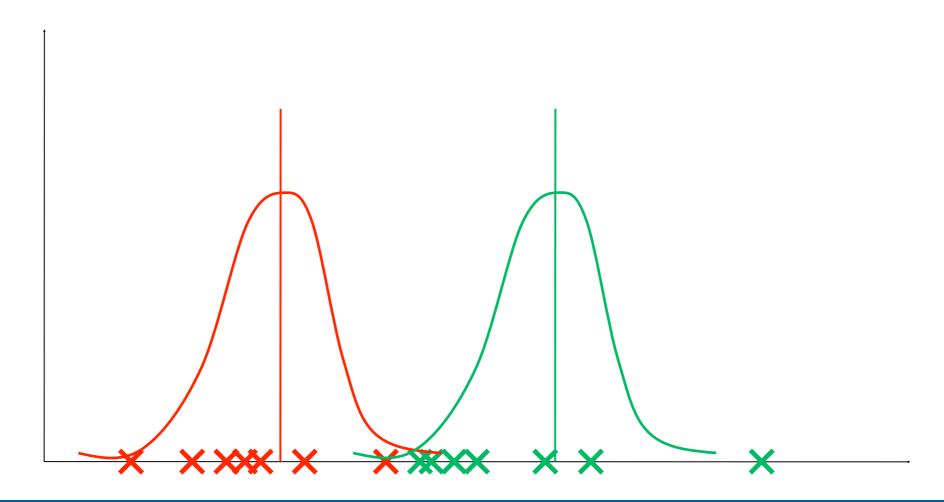
$$\Rightarrow \boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$$



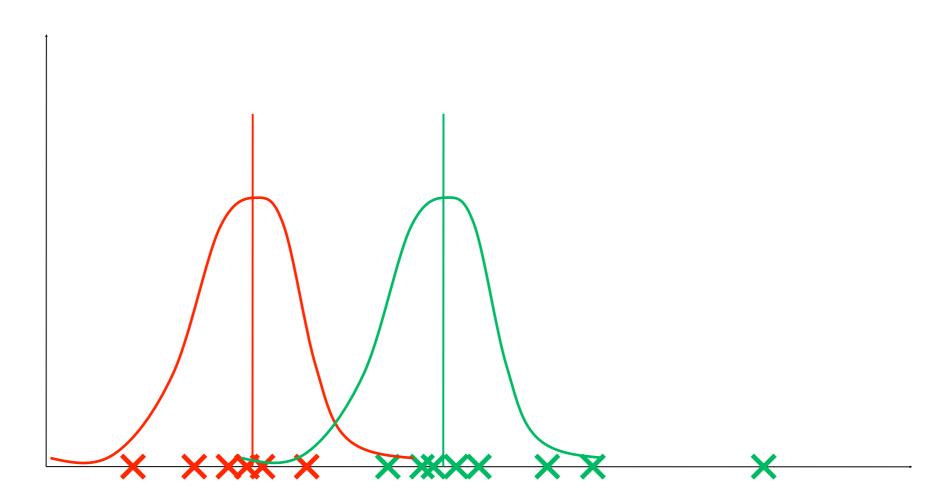
9

Find new optimal assignments:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\| \\ 0 & \text{otherwise} \end{cases}$$

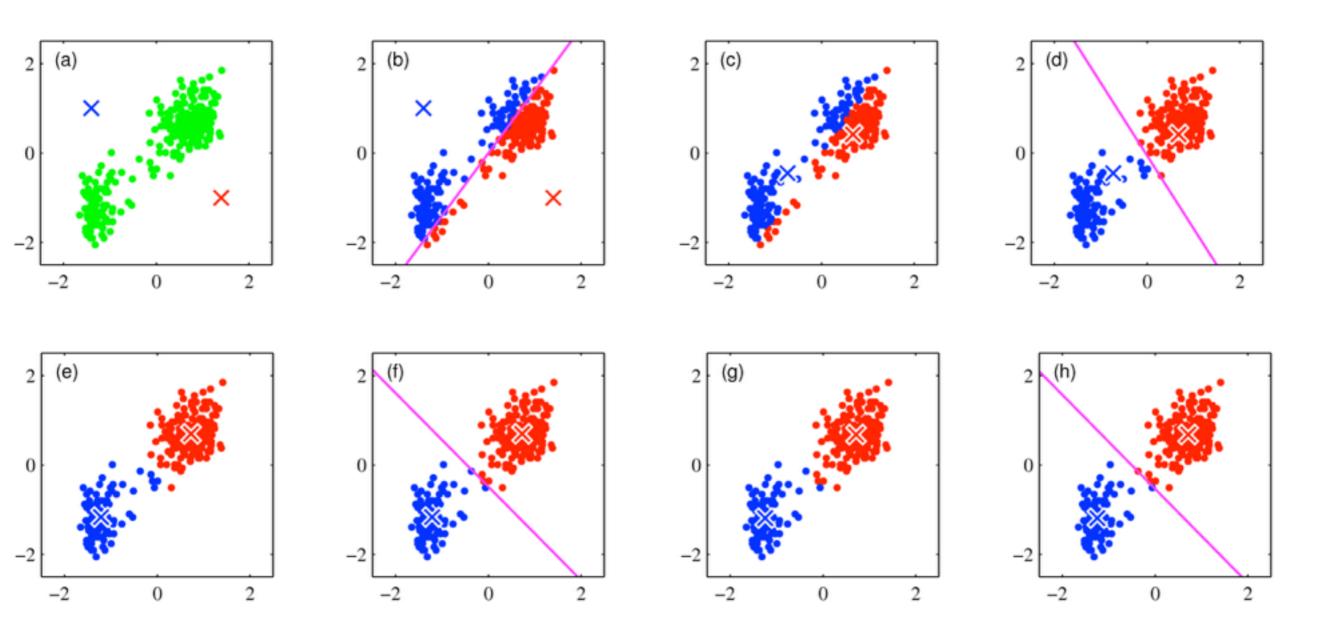


Iterate these steps until means and assignments do not change any more



11

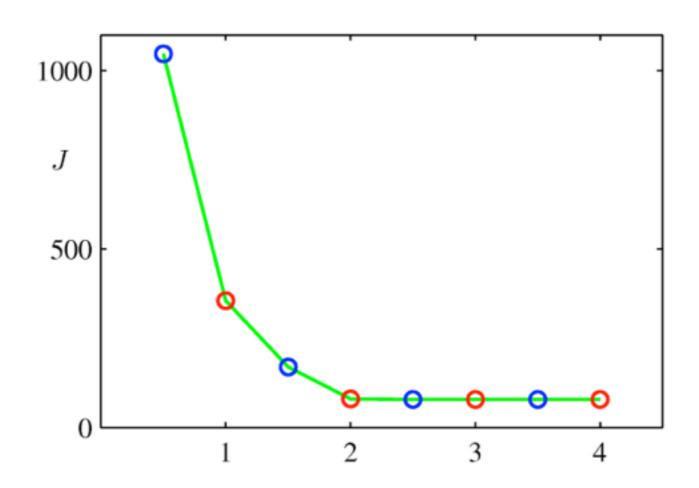
2D Example



- Real data set
- Random initialization

 Magenta line is "decision boundary"

The Cost Function



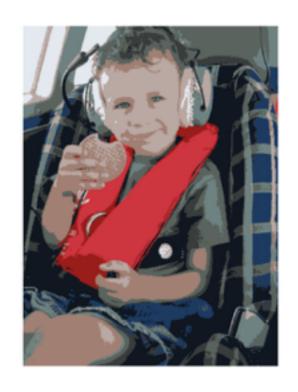
- After every step the cost function J is minimized
- Blue steps: update assignments
- Red steps: update means
- Convergence after 4 rounds

K-means for Segmentation

K = 3

K = 10

Original image



K-Means: Additional Remarks

- K-means converges always, but the minimum is not guaranteed to be a global one
- There is an **online** version of K-means
 - After each addition of \mathbf{x}_n , the nearest center $\boldsymbol{\mu}_k$ is updated: $\boldsymbol{\mu}_k^{\mathrm{new}} = \boldsymbol{\mu}_k^{\mathrm{old}} + \eta_n(\mathbf{x}_n \boldsymbol{\mu}_k^{\mathrm{old}})$
- The K-medoid variant:
 - Replace the Euclidean distance by a general measure
 V.

$$\tilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_n, \boldsymbol{\mu}_k)$$

Mixtures of Gaussians

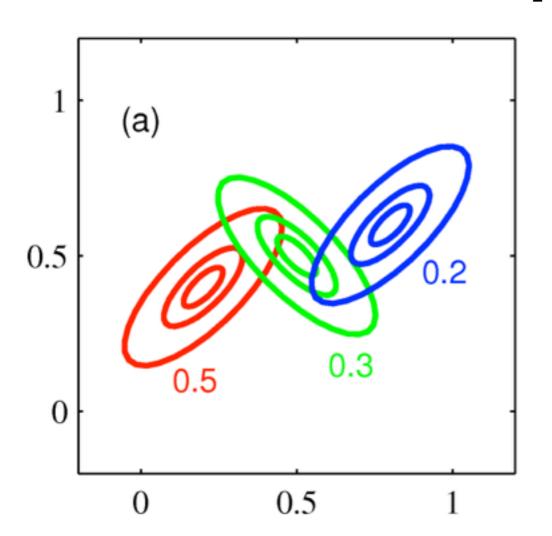
- Assume that the data consists of K clusters
- The data within each cluster is Gaussian
- For any data point \mathbf{x} we introduce a K-dimensional binary random variable \mathbf{z} so that:

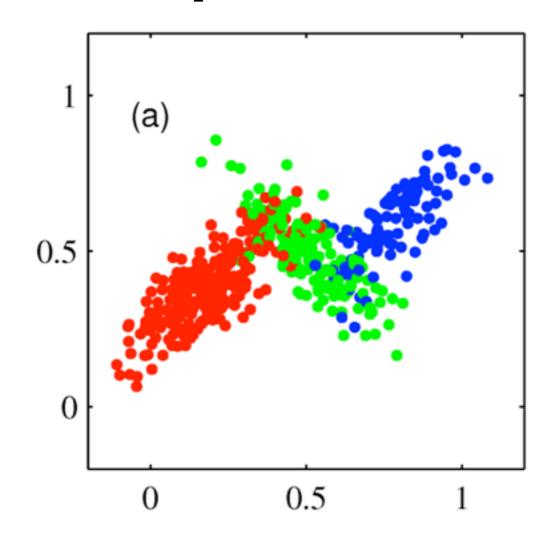
$$p(\mathbf{x}) = \sum_{k=1}^{K} \underbrace{p(z_k = 1)}_{=:\pi_k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

$$z_k \in \{0, 1\}, \quad \sum_{k=1}^K z_k = 1$$

A Simple Example





- Mixture of three Gaussians with mixing coefficients
- Left: all three Gaussians as contour plot
- Right: samples from the mixture model, the red component has the most samples

Parameter Estimation

• From a given set of training data $\{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ we want to find parameters $(\pi_{1,\dots,K}, \boldsymbol{\mu}_{1,\dots,K}, \Sigma_{1,\dots,K})$ so that the likelihood is maximized (MLE):

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \pi_{1,\dots,K}, \boldsymbol{\mu}_{1,\dots,K}, \Sigma_{1,\dots,K}) = \prod_{n=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \Sigma_k)$$

or, applying the logarithm:

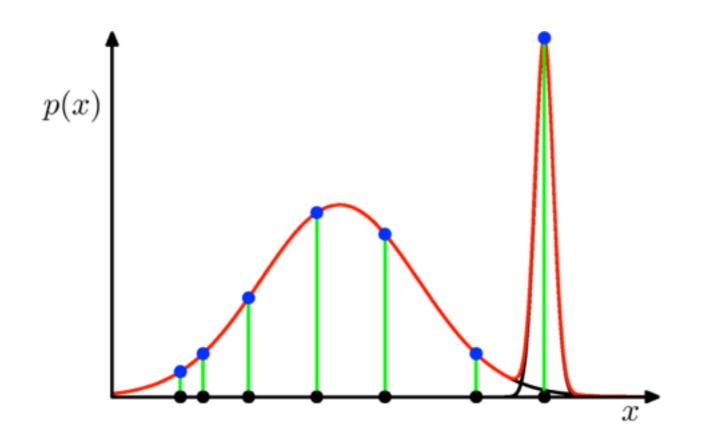
$$\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 However: this is not as easy as maximumlikelihood for single Gaussians!

Problems with MLE for Gaussian Mixtures

- Assume that for one k the mean μ_k is exactly at a data point \mathbf{x}_n
 - For simplicity: assume that $\Sigma_k = \sigma_k^2 I$
 - Then: $\mathcal{N}(\mathbf{x}_n \mid \mathbf{x}_n, \sigma_k^2 I) = \frac{1}{\sqrt{2\pi}\sigma_k^D}$
 - This means that the overall log-likelihood can be maximized arbitrarily by letting $\sigma_k \to 0$ (overfitting)
- Another problem is the identifiability:
 - The order of the Gaussians is not fixed, therefore:
 - There are K! equivalent solutions to the MLE problem

Overfitting with MLE for Gaussian Mixtures



- One Gaussian fits exactly to one data point
- It has a very small variance, i.e. contributes strongly to the overall likelihood
- In standard MLE, there is no way to avoid this!

Expectation-Maximization

- EM is an elegant and powerful method for MLE problems with latent variables
- Main idea: model parameters and latent variables are estimated iteratively, where average over the latent variables (expectation)
- A typical example application of EM is the Gaussian Mixture model (GMM)
- However, EM has many other applications
- First, we consider EM for GMMs

• First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n) \qquad z_{nk} \in \{0, 1\}$$
$$\sum_{k} z_{nk} = 1$$

First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n)$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

• First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n)$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

ullet Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

First, we define the responsibilities:

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n)$$

$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_i \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}$$

• Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:
$$\mu_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n}{\sum_{n=1}^N \gamma(z_{nk})}$$

We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk})(\mathbf{x}_n - \boldsymbol{\mu}_k)(\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)}{\partial \pi_k} \stackrel{!}{=} \mathbf{0}$$
 where: $\sum_{k=1}^K \pi_k = 1$

PD Dr. Rudolph Triebel

Computer Vision Group

We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk})(\mathbf{x}_n - \boldsymbol{\mu}_k)(\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)}{\partial \pi_k} \stackrel{!}{=} \mathbf{0}$$
 where: $\sum_{k=1}^K \pi_k = 1$

and the result is: $\pi_k = \frac{1}{N} \sum_{i=1}^{N} \gamma(z_{nk})$

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$

Algorithm Summary

- 1.Initialize means μ_k covariance matrices Σ_k and mixing coefficients π_k
- 2.Compute the initial log-likelihood $\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- 3. E-Step. Compute the responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

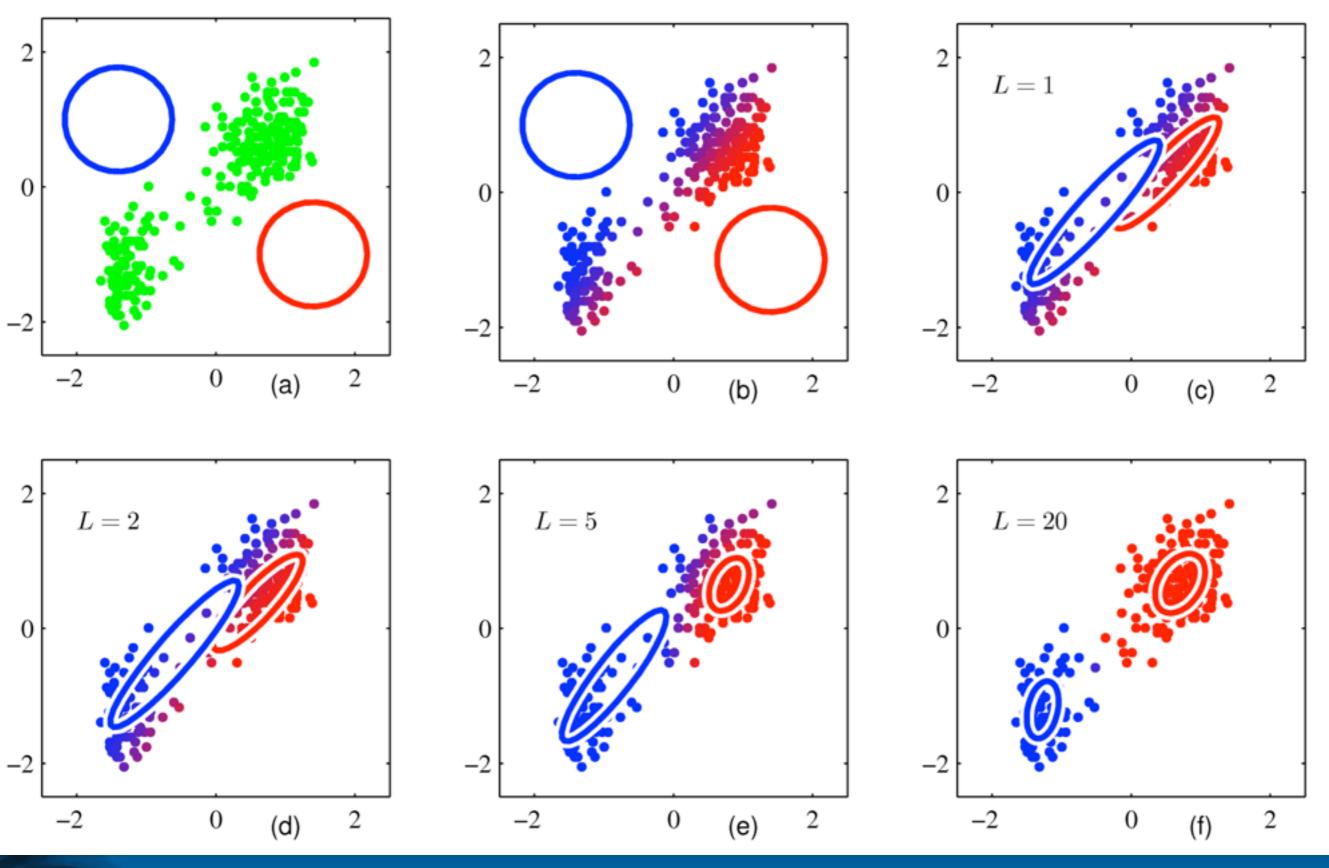
4. M-Step. Update the parameters:

$$\mu_k^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \Sigma_k^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \pi_k^{\text{new}} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$

5. Compute log-likelihood; if not converged go to 3.

28

The Same Example Again



Observations

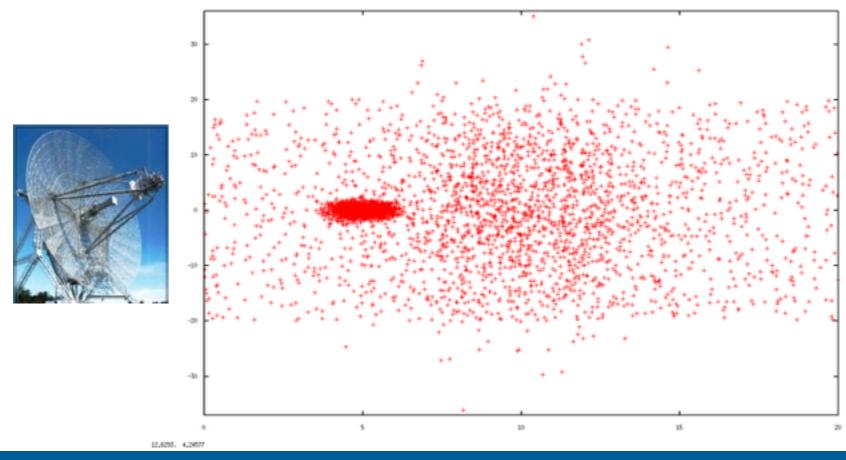
- Compared to K-means, points can now belong to both clusters (soft assignment)
- In addition to the cluster center, a covariance is estimated by EM
- Initialization is the same as used for K-means
- Number of iterations needed for EM is much higher
- Also: each cycle requires much more computation
- Therefore: start with K-means and run EM on the result of K-means (covariances can be initialized to the sample covariances of K-means)
- EM only finds a local maximum of the likelihood!

Variants of EM

- Instead of maximizing the log-likelihood, we can use EM to maximize a posterior when a prior is given (MAP instead of MLE) ⇒ less overfitting
- In Generalized EM, the M-step only increases the lower bound instead of maximization (useful if standard M-step is intractable)
- Similarly, the E-step can be generalized in that the optimization wrt. q is not complete
- Furthermore, there are incremental versions of EM, where data points are given sequentially and the parameters are updated after each data point.

Example 1: Learn a Sensor Model

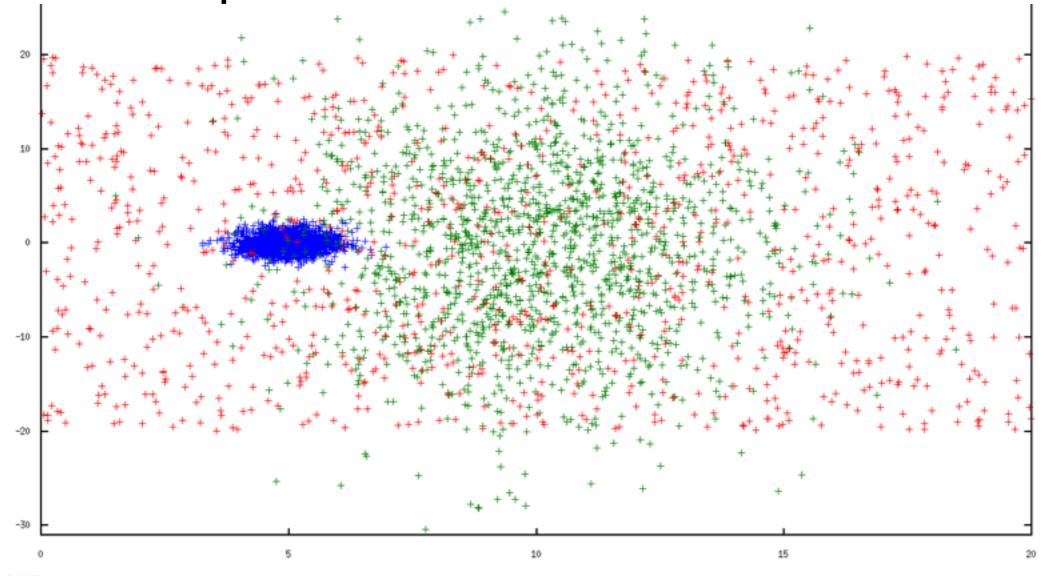
- A Radar range finder on a metallic target will returns 3 types of measurement:
 - The distance to target
 - The distance to the wall behind the target
 - A completely random value



Example 1: Learn a Sensor Model

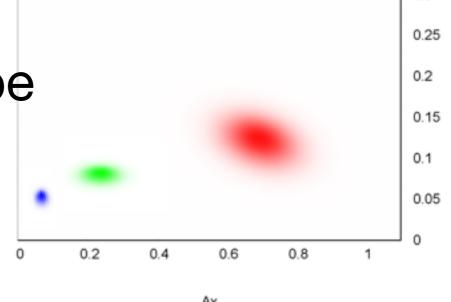
- Which point corresponds to from which model?
- What are the different model parameters?

Solution: Expectation-Maximization



Example 2: Environment Classification

- From each image, the robot extracts features: => points in nD space
- K-means only finds the cluster centers, not their extent and shape
- The centers and covariances can be obtained with EM



P(Ax Av)

0.3

Example 3: Plane Fitting in 3D

- Has been done in this paper
- Given a set of 3D points, fit planes into the data
- Idea: Model parameters θ are normal vectors and distance to origin for a set of planes
- Introduce latent correspondence variables C_{ij} and maximize the expected log-lik.:

$$\mathbb{E}[\log p(Z, C \mid \theta)]$$

Maximization can be done in closed form

Example 3: Plane Fitting in 3D

- Often, we are only given a similarity matrix for the data points
- The idea of Affinity Propagation is to determine cluster centers ("exemplars") that explain other data points in an optimal way
- This is similar to k-medoids, but the algorithm is more robust against local minima
- Idea: each data point must choose another data point as its exemplar; some points will choose themselves as exemplar
- The number of clusters is then found automatically

- Input: similarity values s(i,j)
- Initialize the responsibilities r(i,j), and the availabilities a(i,j) to 0
- do until convergence:
 - recompute the responsibilities:

$$r(i,j) = s(i,j) - \max_{j' \neq j} \{a(i,j') + s(i,j')\}$$

recompute the availabilities:

$$a(i,j) = \min \left\{ 0, r(j,j) + \sum_{i' \notin \{i,j\}} \max\{0, r(i',j)\} \right\}$$

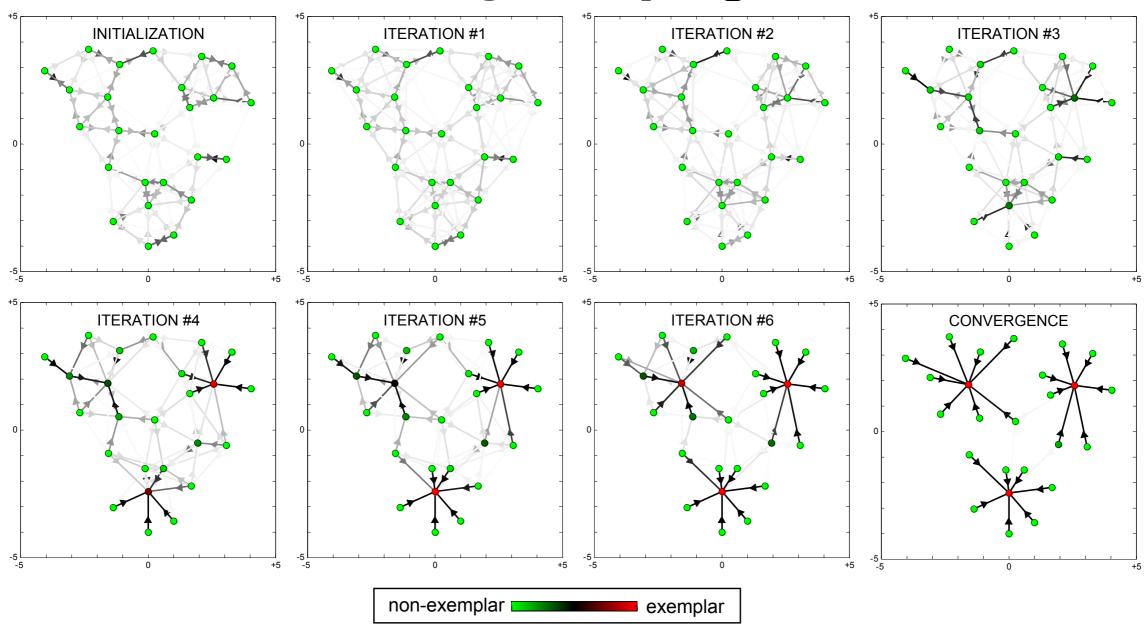
• the j that maximizes r(i,j) + a(i,j) is the exemplar of i

38

PD Dr. Rudolph Triebel

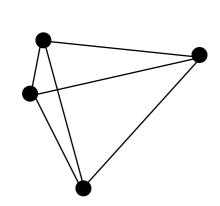
Computer Vision Group

- Intuitively:
 - responsibility measures how much i thinks that j would be a good exemplar
 - availability measures how strongly j things it should be an exemplar for i
- The algorithm can be shown to be equivalent to max-product loopy belief propagation
- Convergence is not guaranteed, but with "damping" oscillations can be avoided
- The number of clusters can be controlled by the "self-similarity"

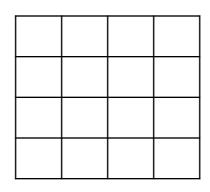


- Colours: how much each point wants to be an exemplar
- Edge strengths: how much a point wants to belong to a cluster

- Consider an undirected graph that connects all data points
- The edge weights are the similarities ("closeness")
- We define the weighted degree d_i of a node as the sum of all outgoing edges

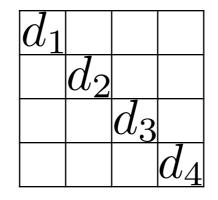


$$W =$$



$$d_i = \sum_{j=1}^{N} w_{ij}$$

$$D =$$



• The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvalue 0

• The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite

• The Graph Laplacian is defined as:

$$L = D - W$$

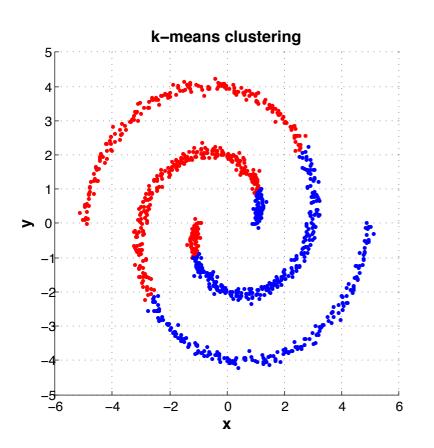
- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite
- With these properties we can show:

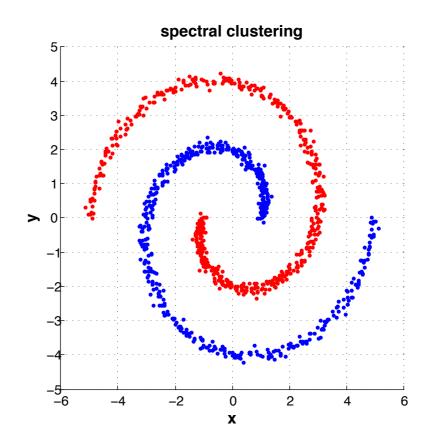
Theorem: The set of eigenvectors of L with eigenvalue 0 is spanned by the indicator vectors $1_{A_1}, \ldots, 1_{A_K}$, where A_k are the K connected components of the graph.

The Algorithm

- Input: Similarity matrix W
- Compute L = D W
- Compute the eigenvectors that correspond to the K smallest eigenvalues
- Stack these vectors as columns in a matrix U
- Treat each row of U as a K-dim data point
- Cluster the N rows with K-means clustering
- The indices of the rows that correspond to the resulting clusters are those of the original data points.

An Example





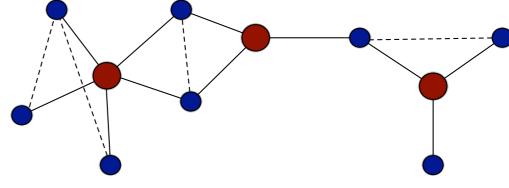
- Spectral clustering can handle complex problems such as this one
- The complexity of the algorithm is O(N³), because it has to solve an eigenvector problem
- But there are efficient variants of the algorithm

Further Remarks

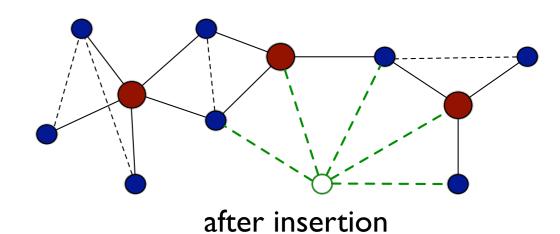
- To account for nodes that are highly connected, we can use a normalized version of the graph Laplacian
- Two different methods exist:
 - $L_{rw} = D^{-1}L = I D^{-1}W$
 - $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- These have similar eigenspaces than the original Laplacian L
- Clustering results tend to be better than with the unnormalized Laplacian

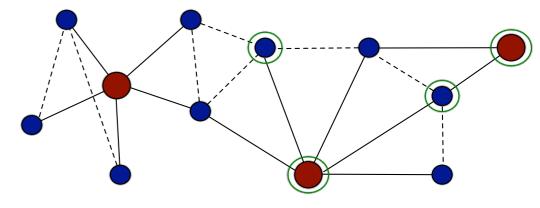
Online Star Clustering

- clusters consist of centers and satellites, connected to each other by edges
- normalized cosine distance is used to compute the similarities between features
- number of clusters is inferred automatically and depends on a **similarity threshold** σ
- new elements are inserted incrementally without rearranging the entire data structure
- insertion time is asymptotically linear in the size of the graph
- star-subgraph geometry ensures high expected satellite similarity, implying dense clustering



star cluster graph



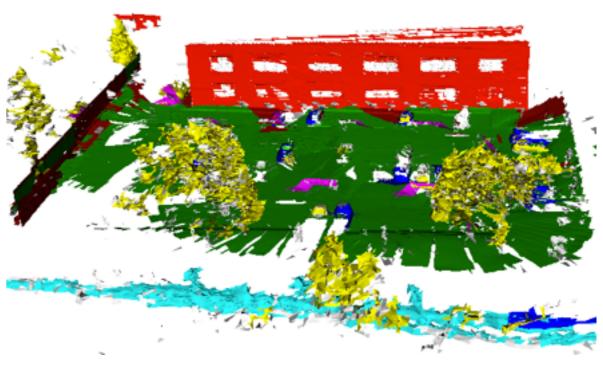


new cluster centers

Example 4: Online Scene Labeling

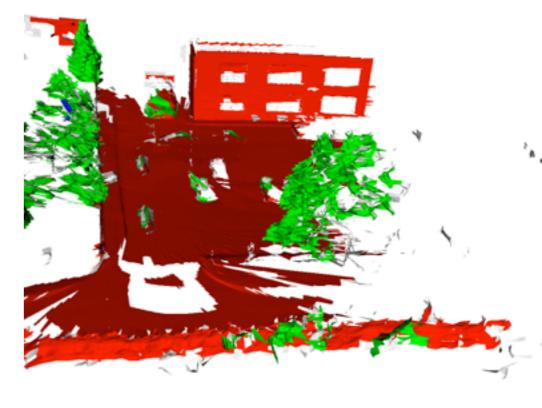
Given: 3D Point Cloud Data

Aim: Clustering

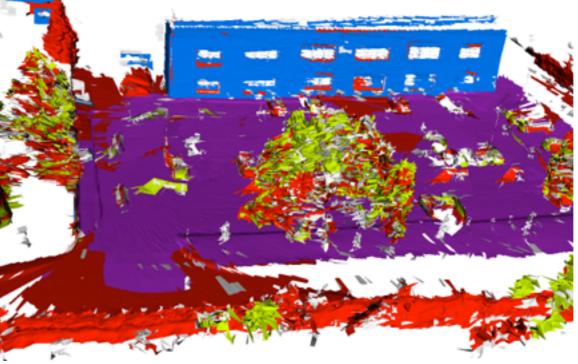


Example 4: Online Scene classification

after 2 point clouds: 2 discovered clusters



after 4 point clouds: 3 discovered clusters



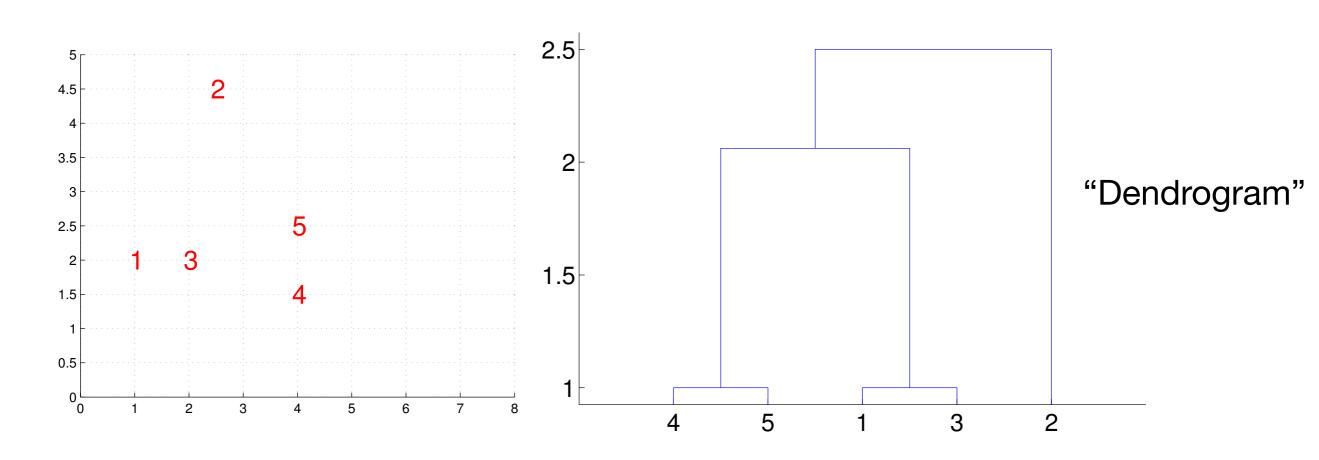
after 17 point clouds: 6 discovered clusters

Hierarchical Clustering

- Often, we want to have nested clusters instead of a "flat" clustering
- Two possible methods:
 - "bottom-up" or agglomerative clustering
 - "top-down" or divisive clustering
- Both methods take a dissimilarity matrix as input
- Bottom-up grows merges points to clusters
- Top-down splits clusters into sub-clusters
- Both are heuristics, there is no clear objective function
- They always produce a clustering (also for noise)

Agglomerative Clustering

- Start with N clusters, each contains exactly one data point
- At each step, merge the two most similar groups
- Repeat until there is a single group

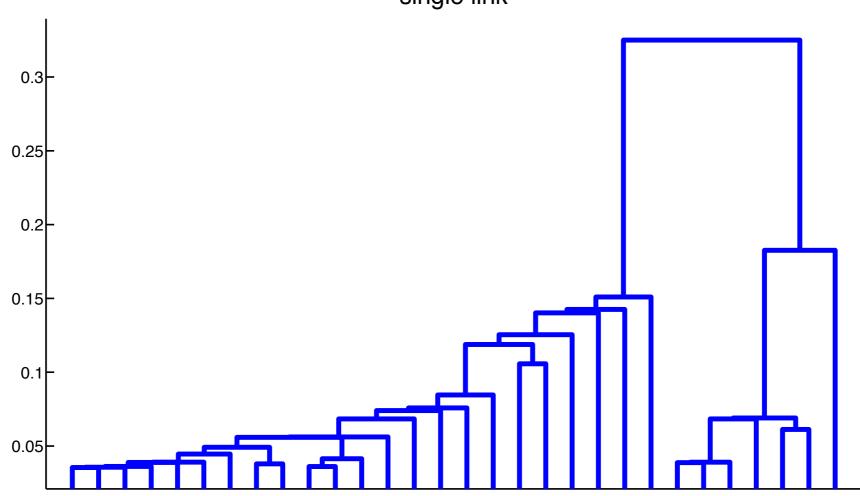


Linkage

- In agglomerative clustering, it is important to define a distance measure between two clusters
- There are three different methods:
 - Single linkage: considers the two closest elements from both clusters and uses their distance
 - Complete linkage: considers the two farthest elements from both clusters
 - Average linkage: uses the average distance between pairs of points from both clusters
- Depending on the application, one linkage should be preferred over the other

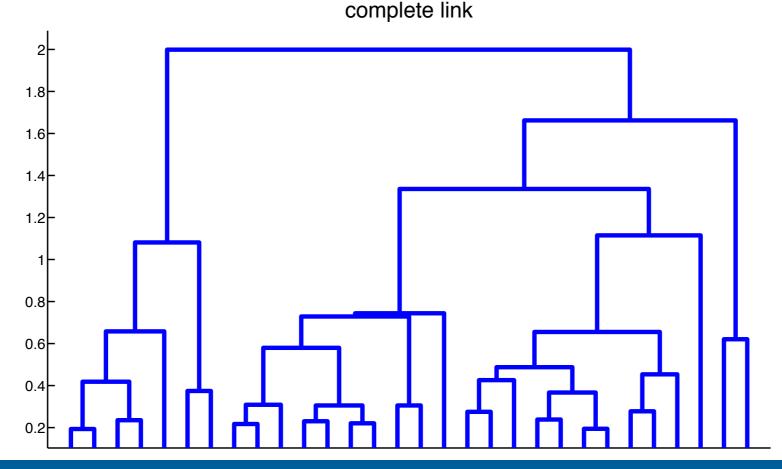
Single Linkage

- The distance is based on $d_{SL}(G,H) = \min_{i \in G, i' \in H} d_{i,i'}$
- The resulting dendrogram is a minimum spanning tree, i.e. it minimizes the sum of the edge weights
- Thus: we can compute the clustering in O(N²) time



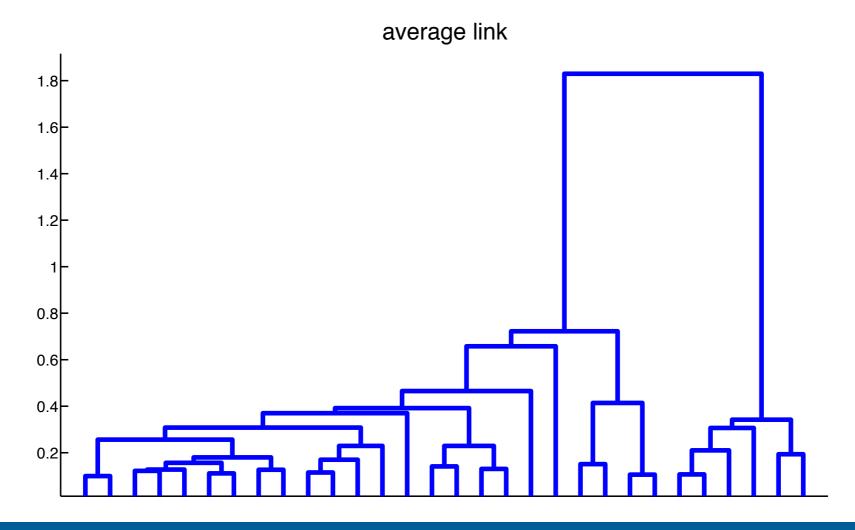
Complete Linkage

- The distance is based on $d_{CL}(G,H) = \max_{i \in G, i' \in H} d_{i,i'}$
- Complete linkage fulfills the compactness property, i.e. all points in a group should be similar to each other
- Tends to produce clusters with smaller diameter



Average Linkage

- The distance is based on $d_{avg}(G,H)=\frac{1}{n_Gn_H}\sum_{i\in G}\sum_{i'\in H}d_{i,i'}$ Is a good compromise between single and
- complete linkage
- However: sensitive to changes on the meas. scale



Divisive Clustering

- Start with all data in a single cluster
- Recursively divide each cluster into two child clusters
- Problem: optimal split is hard to find
- Idea: use the cluster with the largest diameter and use K-means with K = 2
- Or: use minimum-spanning tree and cut links with the largest dissimilarity
- In general two advantages:
 - Can be faster
 - More globally informed (not myopic as bottom-up)

Choosing the Number of Clusters

- As in general, choosing the number of clusters is hard
- When a dendrogram is available, a gap can be detected in the lengths of the links
- This represents the dissimilarity between merged groups
- However: in real data this can be hard to detect
- There are Bayesian techniques to address this problem (Bayesian hierarchical clustering)

Evaluation of Clustering Algorithms

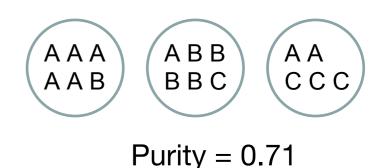
- Clustering is unsupervised: evaluation of the output is hard, because no ground truth is given
- Intuitively, points in a cluster should be similar and points in different clusters dissimilar
- However, better methods use external information, such as labels or a reference clustering
- Then we can compare clusterings with the labels using different metrics, e.g.
 - purity
 - mutual information

Purity

- Define N_{ij} the number of objects in cluster i that are in class j $_{C}$
- Define $N_i = \sum N_{ij}$ number of objects in cluster i

•
$$p_{ij} = \frac{N_{ij}}{N_i}$$
 $p_i = \max_j p_{ij}$ "Purity"

• overall purity
$$\sum_{i}^{N_{i}} \frac{N_{i}}{N} p_{i}$$



- Purity ranges from 0 (bad) to 1 (good)
- But: a clustering with each object in its own cluster has a purity of 1

Mutual Information

- Let U and V be two clusterings
- Define the probability that a randomly chosen point belongs to cluster u_i in U and to v_i in V

$$p_{UV}(i,j) = \frac{|u_i \cap v_j|}{N}$$

• Also: The prob. that a point is in
$$u_i$$
 $p_U(i) = \frac{|u_i|}{N}$
$$\mathbb{I}(U,V) = \sum_{i=1}^R \sum_{j=1}^C p_{UV}(i,j) \log \frac{p_{UV}(i,j)}{p_U(i)p_V(j)}$$

 This can be normalized to account for many small clusters with low entropy

Summary

- Several Clustering methods exist:
 - K-means clustering and Expectation-Maximization, both based on Gaussian Mixture Models
 - K-means uses hard assignments, whereas EM uses soft assignments and estimates also the covariances
 - Spectral clustering uses the graph Laplacian and performs an eigenvector analysis
- Major Problem:
 - most clustering algorithms require the number of clusters to be given

4. Kernel Methods

Motivation

- Usually learning algorithms assume that some kind of feature function is given
- Reasoning is then done on a feature vector of a given (finite) length
- But: some objects are hard to represent with a fixed-size feature vector, e.g. text documents, molecular structures, evolutionary trees
- Idea: use a way of measuring similarity without the need of features, e.g. the edit distance for strings
- This we will call a kernel function

Dual Representation

Many problems can be expressed using a **dual** formulation. Example (linear regression):

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w} \Phi^T \mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{w}^T \mathbf{w}$$

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T KK\mathbf{a} - \mathbf{a}^T K\mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T K\mathbf{a}$$

This is called the dual formulation.

The solution to the dual problem is:

$$\mathbf{a} = (K + \lambda I_N)^{-1} \mathbf{t}$$

Dual Representation

Many problems can be expressed using a dual formulation. Example (linear regression):

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w} \Phi^T \mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{w}^T \mathbf{w}$$

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T K K \mathbf{a} - \mathbf{a}^T K \mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T K \mathbf{a}$$

$$\mathbf{a} = (K + \lambda I_N)^{-1} \mathbf{t}$$

This we can use to make predictions:

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \Phi \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (K + \lambda I_N)^{-1} \mathbf{t}$$

(now x is unknown and a is given from training)

Dual Representation

$$y(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (K + \lambda I_N)^{-1} \mathbf{t}$$

where:

$$\mathbf{k}(\mathbf{x}) = \begin{pmatrix} \phi(\mathbf{x}_1)^T \phi(\mathbf{x}) \\ \vdots \\ \phi(\mathbf{x}_N)^T \phi(\mathbf{x}) \end{pmatrix} \quad K = \begin{pmatrix} \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}_1)^T \phi(\mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_N)^T \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}_N)^T \phi(\mathbf{x}_N) \end{pmatrix}$$

Thus, y is expressed only in terms of **dot products** between different pairs of $\phi(\mathbf{x})$, or in terms of the **kernel function**

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Representation using the Kernel

$$y(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (K + \lambda I_N)^{-1} \mathbf{t}$$

Now we have to invert a matrix of size $N \times N$,

before it was $M \times M$ where M < N, but:

By expressing everything with the kernel function, we can deal with very high-dimensional or even **infinite**-dimensional feature spaces!

Idea: Don't use features at all but simply define a similarity function expressed as the kernel!

Constructing Kernels

The straightforward way to define a kernel function is to first find a basis function $\phi(\mathbf{x})$ and to define:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

This means, k is an inner product in some space \mathcal{H} , i.e.

- 1.Symmetry: $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_j), \phi(\mathbf{x}_i) \rangle = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$
- 2.Linearity: $\langle a(\phi(\mathbf{x}_i) + \mathbf{z}), \phi(\mathbf{x}_j) \rangle = a \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle + a \langle \mathbf{z}, \phi(\mathbf{x}_j) \rangle$
- 3. Positive definite: $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_i) \rangle \geq 0$, equal if $\phi(\mathbf{x}_i) = \mathbf{0}$

Can we find conditions for k under which there is a (possibly infinite dimensional) basis function into \mathcal{H} , where k is an inner product?

Constructing Kernels

Theorem (Mercer): If k is

- 1.symmetric, i.e. $k(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_j, \mathbf{x}_i)$ and
- 2.positive definite, i.e.

$$K = \left(egin{array}{cccc} k(\mathbf{x}_1,\mathbf{x}_1) & \dots & k(\mathbf{x}_1,\mathbf{x}_N) \\ dots & \ddots & dots \\ k(\mathbf{x}_N,\mathbf{x}_1) & \dots & k(\mathbf{x}_N,\mathbf{x}_N) \end{array}
ight)$$
 "Gram Matrix"

is positive definite, then there exists a mapping $\phi(\mathbf{x})$ into a feature space \mathcal{H} so that k can be expressed as an inner product in \mathcal{H} .

This means, we don't need to find $\phi(\mathbf{x})$ explicitly! We can directly work with k "Kernel Trick"

Application Examples

Kernel Methods can be applied for many different problems, e.g.:

- Density estimation (unsupervised learning)
- Regression
- Principal Component Analysis (PCA)
- Classification

Most important Kernel Methods are

- Support Vector Machines
- Gaussian Processes

Kernelization

- Many existing algorithms can be converted into kernel methods
- This process is called "kernelization"

Idea:

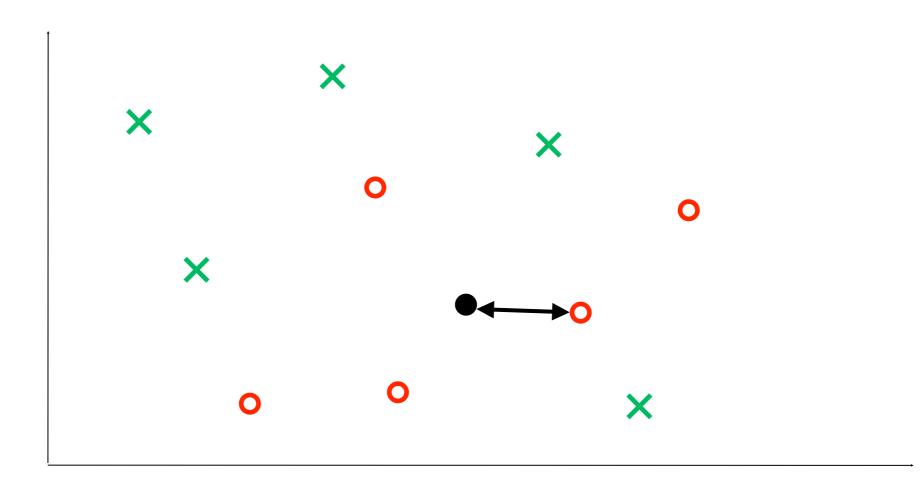
- express similarities of data points in terms of an inner product (dot product)
- replace all occurrences of that inner product by the kernel function

This is called the kernel trick

Example: Nearest Neighbor

 The NN classifier selects the label of the nearest neighbor in Euclidean distance

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \mathbf{x}_i^T \mathbf{x}_i + \mathbf{x}_j^T \mathbf{x}_j - 2\mathbf{x}_i^T \mathbf{x}_j$$



Example: Nearest Neighbor

 The NN classifier selects the label of the nearest neighbor in Euclidean distance

$$\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \mathbf{x}_i^T \mathbf{x}_i + \mathbf{x}_j^T \mathbf{x}_j - 2\mathbf{x}_i^T \mathbf{x}_j$$

 We can now replace the dot products by a valid Mercer kernel and we obtain:

$$d(\mathbf{x}_i, \mathbf{x}_j)^2 = k(\mathbf{x}_i, \mathbf{x}_i) + k(\mathbf{x}_j, \mathbf{x}_j) - 2k(\mathbf{x}_i, \mathbf{x}_j)$$

- This is a kernelized nearest-neighbor classifier
- We do not explicitly compute feature vectors!

Back to Linear Regression

We had the primal and the dual formulation:

$$J(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w} \Phi^T \mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{w}^T \mathbf{w}$$

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T K K \mathbf{a} - \mathbf{a}^T K \mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T K \mathbf{a}$$

with the dual solution:

$$\mathbf{a} = (K + \lambda I_N)^{-1} \mathbf{t}$$

This we can use to make predictions (MAP):

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \Phi \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (K + \lambda I_N)^{-1} \mathbf{t}$$

Observations

- We have found a way to predict function values of y for new input points x
- As we used regularized regression, we can equivalently find the predictive distribution by marginalizing out the parameters w

Questions:

- Can we find a closed form for that distribution?
- How can we model the uncertainty of our prediction?
- Can we use that for classification?

Definition

Definition: A **Gaussian process** is a collection of random variables, any finite number of which have a joint Gaussian distribution.

The number of random variables can be **infinite**! This means: a GP is a Gaussian distribution over **functions**!

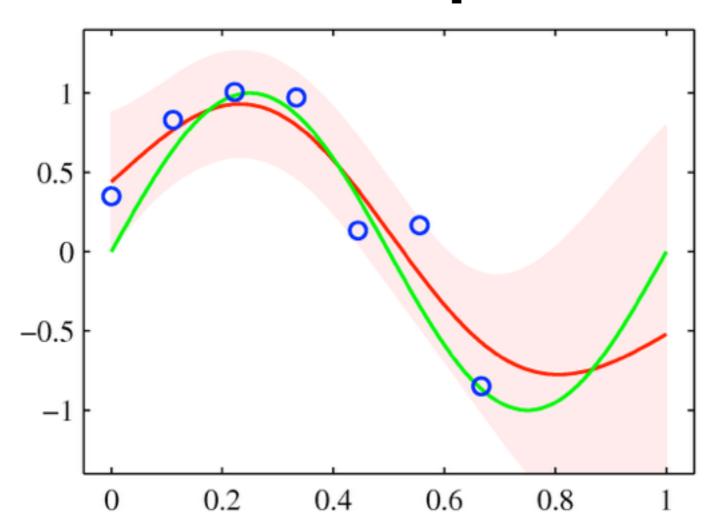
To specify a GP we need:

mean function: $m(\mathbf{x}) = \mathbb{E}[y(\mathbf{x})]$

covariance function:

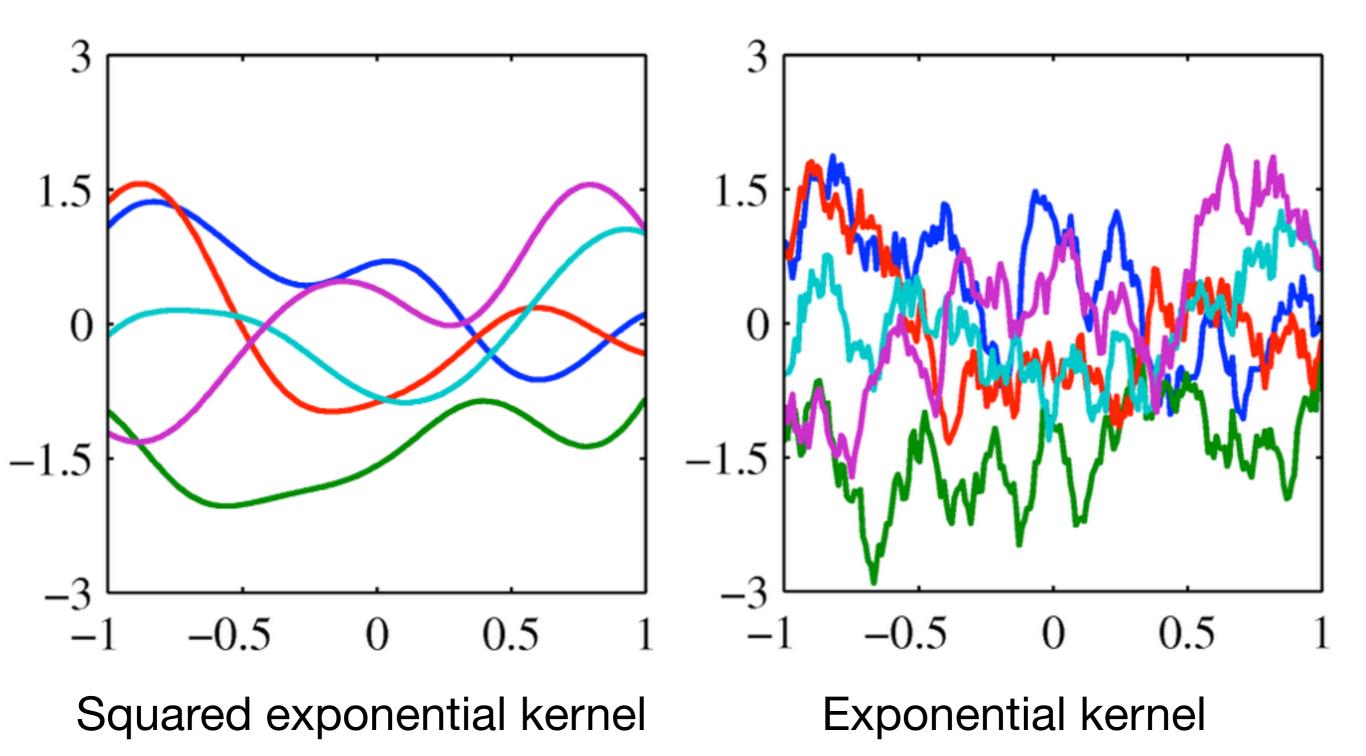
$$k(\mathbf{x}_1, \mathbf{x}_2) = \mathbb{E}[y(\mathbf{x}_1) - m(\mathbf{x}_1)y(\mathbf{x}_2) - m(\mathbf{x}_2)]$$

Example



- green line: sinusoidal data source
- blue circles: data points with Gaussian noise
- red line: mean function of the Gaussian process

Sampling from a GP



Prediction with a Gaussian Process

Most often we are more interested in predicting new function values for given input data.

We have:

training data
$$\mathbf{x}_1, \dots, \mathbf{x}_N \quad y_1, \dots, y_N$$
 test input $\mathbf{x}_1^*, \dots, \mathbf{x}_M^*$

And we want test outputs y_1^*, \dots, y_M^* The joint probability is

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{y}_* \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{pmatrix} K(X, X) & K(X, X_*) \\ K(X_*, X) & K(X_*, X_*) \end{pmatrix} \right)$$

and we need to compute $p(\mathbf{y}^* \mid \mathbf{x}^*, X, \mathbf{y})$.

Prediction with a Gaussian Process

In the case of only one test point x^* we have

$$K(X, \mathbf{x}^*) = \left(\begin{array}{c} k(\mathbf{x}_1, \mathbf{x}_*) \\ \vdots \\ k(\mathbf{x}_N, \mathbf{x}_*) \end{array} \right) = \mathbf{k}_*$$

Now we compute the conditional distribution

$$p(y^* \mid \mathbf{x}^*, X, \mathbf{y}) = \mathcal{N}(y_* \mid \mu_*, \Sigma_*)$$

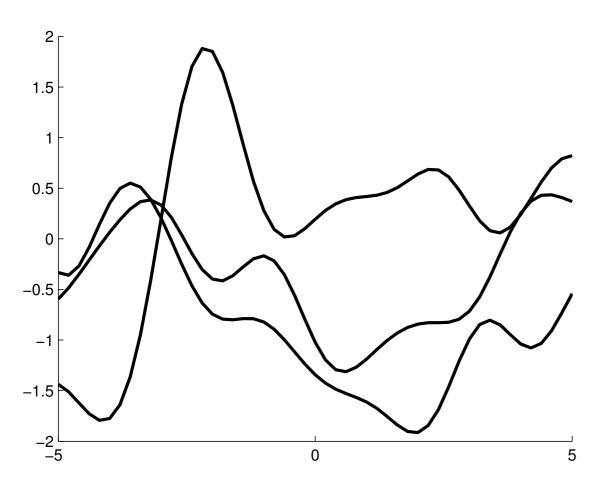
where

$$\mu_* = \mathbf{k}_*^T K^{-1} \mathbf{t}$$

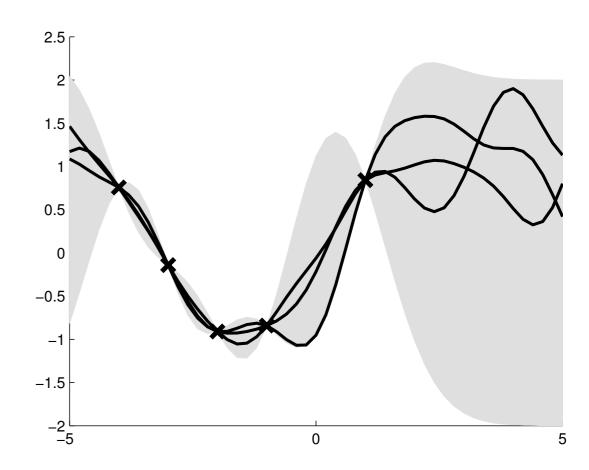
$$\Sigma_* = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T K^{-1} \mathbf{k}_*$$

This defines the predictive distribution.

Example



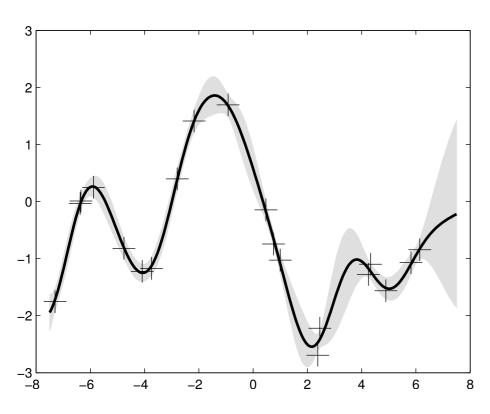
Functions sampled from a Gaussian Process prior



Functions sampled from the predictive distribution

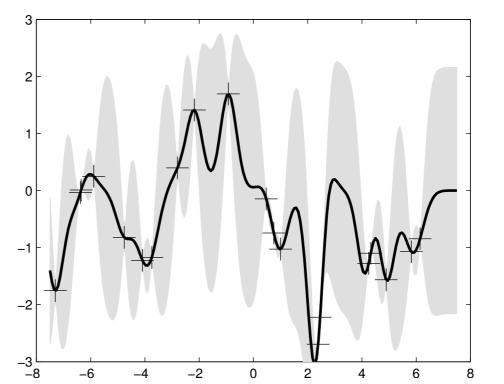
The predictive distribution is itself a Gaussian process. It represents the posterior after observing the data. The covariance is low in the vicinity of data points.

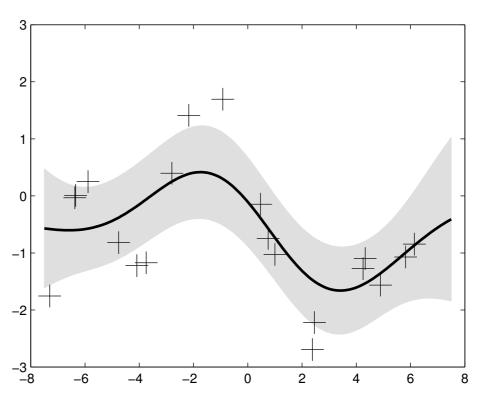
Varying the Hyperparameters



$$l = \sigma_f = 1, \quad \sigma_n = 0.1$$

- 20 data samples
- GP prediction with different kernel hyper parameters





$$l = 0.3,$$

$$\sigma_f = 1.08,$$

$$\sigma_n = 0.0005$$

$$l=3$$

$$\sigma_f = 1.16$$

$$\sigma_n = 0.89$$

Varying the Hyperparameters

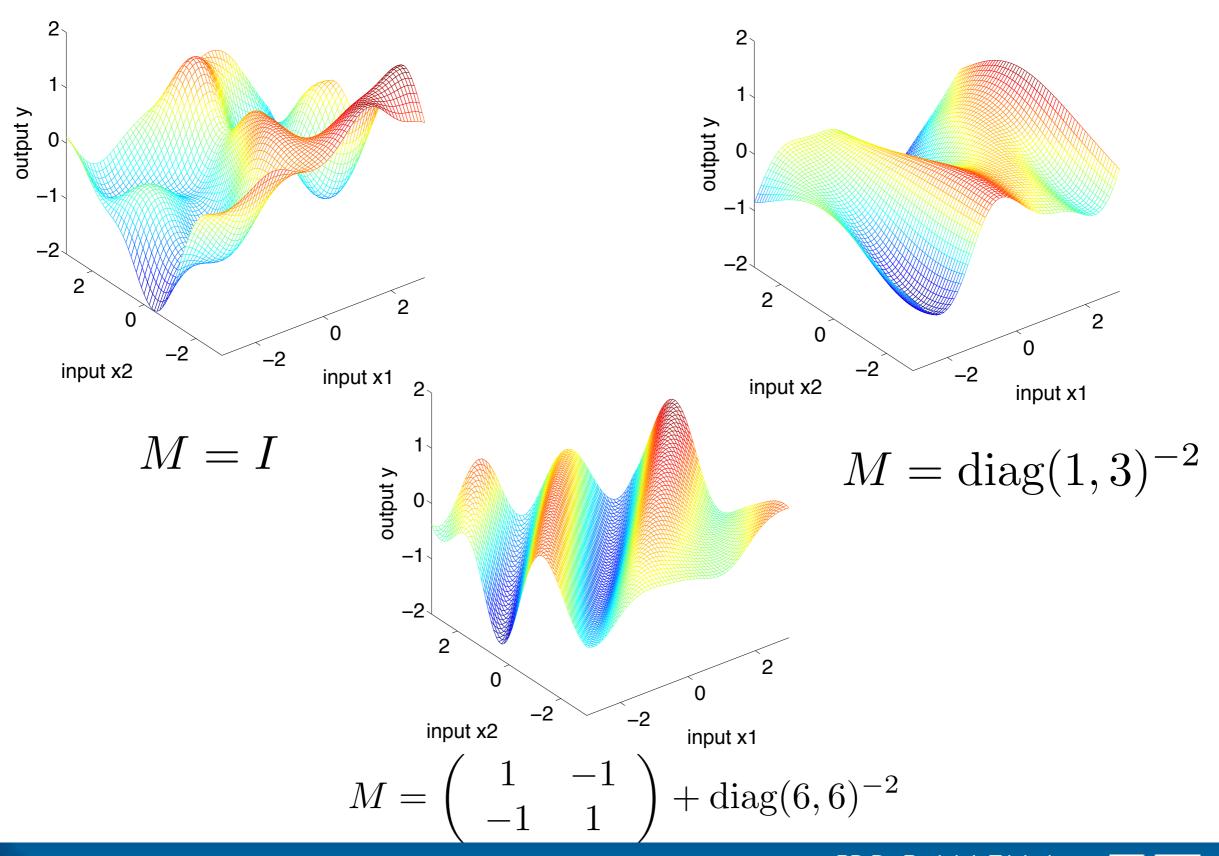
The squared exponential covariance function can be generalized to

$$k(\mathbf{x}_p, \mathbf{x}_q) = \sigma_f^2 \exp(-\frac{1}{2}(\mathbf{x}_p - \mathbf{x}_q)^T M(\mathbf{x}_p - \mathbf{x}_q)) + \sigma_n^2 \delta_{pq}$$

where M can be:

- $M = l^{-2}I$: this is equal to the above case
- $M = \operatorname{diag}(l_1, \dots, l_D)^{-2}$: every feature dimension has its own length scale parameter
- $M = \Lambda \Lambda^T + \mathrm{diag}(l_1, \dots, l_D)^{-2}$: here Λ has less than D columns

Varying the Hyperparameters



Implementation

Algorithm 1: GP regression

 $\mathtt{var}[f_*] \leftarrow k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^T \mathbf{v}$

Data: training data (X, \mathbf{y}) , test data \mathbf{x}_*

Input: Hyper parameters σ_f^2 , l, σ_n^2

$$K_{ij} \leftarrow k(\mathbf{x}_i, \mathbf{x}_j)$$
 —
$$L \leftarrow \text{cholesky}(K + \sigma_n^2 I)$$

$$\boldsymbol{\alpha} \leftarrow L^T \backslash (L \backslash \mathbf{y})$$
 —

Training Phase

 $\mathbb{E}[f_*] \leftarrow \mathbf{k}_*^T \boldsymbol{\alpha}$ $\mathbf{v} \leftarrow L \backslash \mathbf{k}_*$

Test Phase

- $\log p(\mathbf{y} \mid X) \leftarrow -\frac{1}{2}\mathbf{y}^T \boldsymbol{\alpha} \sum_{i} \log L_{ii} \frac{N}{2} \log(2\pi)$
- Cholesky decomposition is numerically stable
- Can be used to compute inverse efficiently

Estimating the Hyperparameters

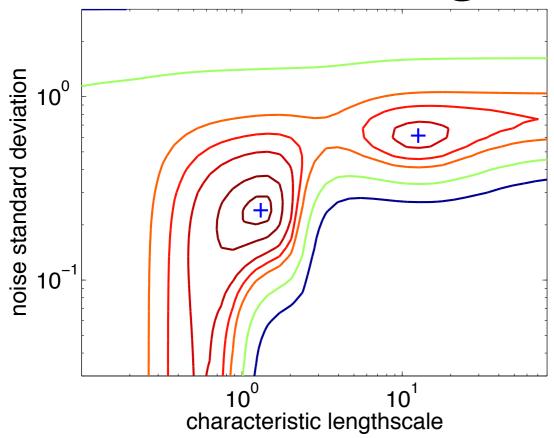
To find optimal hyper parameters we need the marginal likelihood:

$$p(\mathbf{y} \mid X) = \int p(\mathbf{y} \mid \mathbf{f}, X) p(\mathbf{f} \mid X) d\mathbf{f}$$

This expression implicitly depends on the hyper parameters, but y and X are given from the training data. It can be computed in closed form, as all terms are Gaussians.

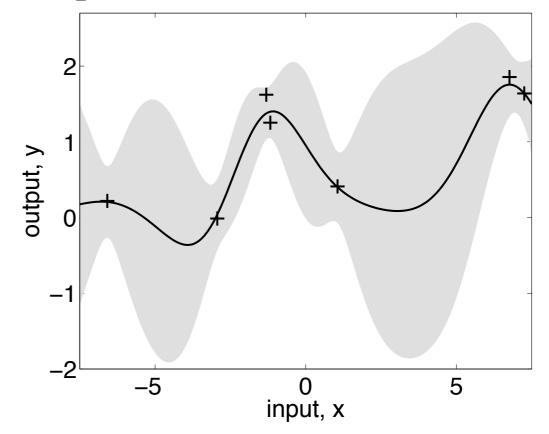
We take the logarithm, compute the derivative and set it to θ . This is the **training** step.

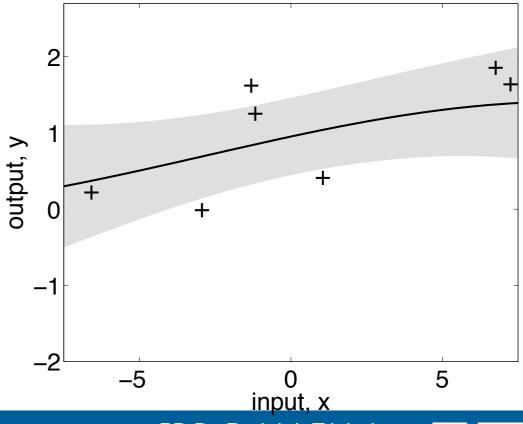
Estimating the Hyperparameters



The log marginal likelihood is not necessarily concave, i.e. it can have local maxima.

The local maxima can correspond to sub-optimal solutions.





Automatic Relevance Determination

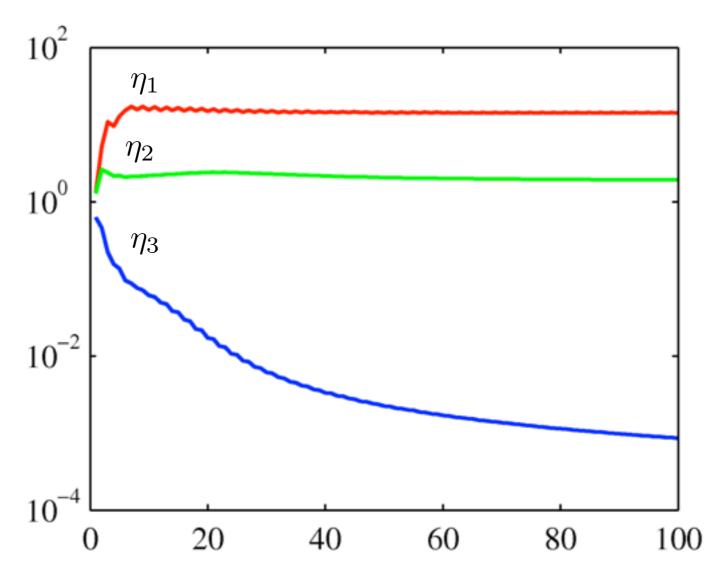
- We have seen how the covariance function can be generalized using a matrix M
- ullet If M is diagonal this results in the kernel function

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f \exp\left(\frac{1}{2} \sum_{i=1}^{D} \eta_i (x_i - x_i')^2\right)$$

- We can interpret the η_i as weights for each feature dimension
- Thus, if the length scale $l_i = 1/\eta_i$ of an input dimension is large, the input is less relevant
- During training this is done automatically

Automatic Relevance Determination

3-dimensional data, parameters η_1 η_2 η_3 as they evolve during training



During the optimization process to learn the hyper-parameters, the reciprocal length scale for one parameter decreases, i.e.:

This hyper parameter is not very relevant!

Gaussian Processes - Classification

Gaussian Processes For Classification

In regression we have $y \in \mathbb{R}$, in binary classification we have $y \in \{-1, 1\}$

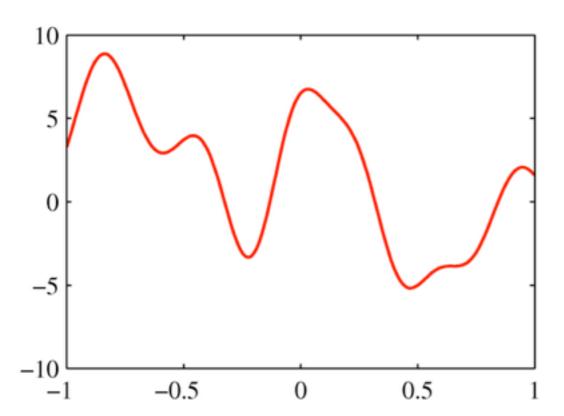
To use a GP for classification, we can apply a **sigmoid** function to the posterior obtained from the GP and compute the class probability as:

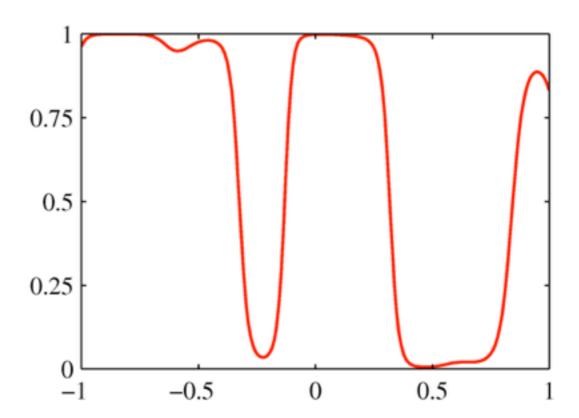
$$p(y = +1 \mid \mathbf{x}) = \sigma(f(\mathbf{x}))$$

If the sigmoid function is symmetric: $\sigma(-z) = 1 - \sigma(z)$ then we have $p(y \mid \mathbf{x}) = \sigma(yf(\mathbf{x}))$.

A typical type of sigmoid function is the logistic sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)}$

Application of the Sigmoid Function





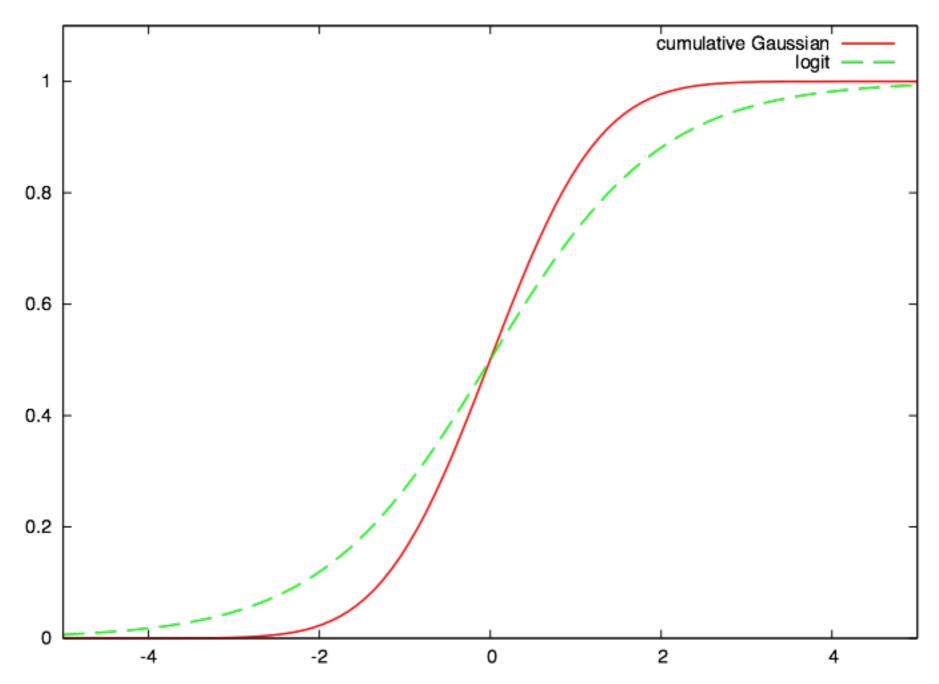
Function sampled from a Gaussian Process

Sigmoid function applied to the GP function

Another symmetric sigmoid function is the cumulative Gaussian:

$$\Phi(z) = \int_{-\infty}^{z} \mathcal{N}(x \mid 0, 1) dx$$

Visualization of Sigmoid Functions



The cumulative Gaussian is slightly steeper than the logistic sigmoid

The Latent Variables

In regression, we directly estimated f as

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

and values of *f* where observed in the training data. Now only labels +1 or -1 are observed and *f* is treated as a set of **latent variables.**

A major advantage of the Gaussian process classifier over other methods is that it **marginalizes** over all latent functions rather than maximizing some model parameters.

Class Prediction with a GP

The aim is to compute the predictive distribution

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

Class Prediction with a GP

The aim is to compute the predictive distribution

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

we marginalize over the latent variables from the training data:

$$p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f} \mid X, \mathbf{y}) d\mathbf{f}$$

predictive distribution of the latent variable (from regression)

Class Prediction with a GP

The aim is to compute the predictive distribution

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

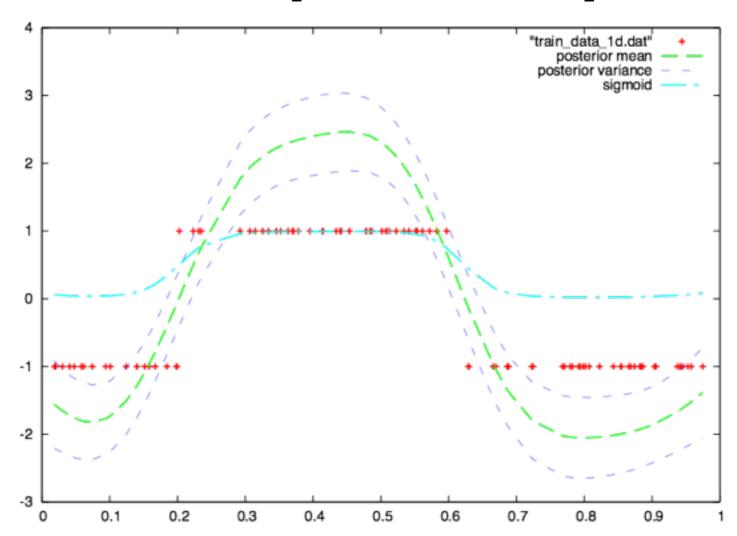
we marginalize over the latent variables from the training data:

$$p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f} \mid X, \mathbf{y}) d\mathbf{f}$$

we need the posterior over the latent variables:

(sigmoid)
$$p(\mathbf{f}\mid X,\mathbf{y}) = \frac{p(\mathbf{y}\mid \mathbf{f})p(\mathbf{f}\mid X)}{p(\mathbf{y}\mid X)}$$
 prior normalizer

A Simple Example



- Red: Two-class training data
- Green: mean function of $p(\mathbf{f} \mid X, \mathbf{y})$
- Light blue: sigmoid of the mean function

But There Is A Problem...

$$p(\mathbf{f} \mid X, \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid X)}{p(\mathbf{y} \mid X)}$$

- The likelihood term is not a Gaussian!
- This means, we can not compute the posterior in closed form.
- There are several different solutions in the literature, e.g.:
 - Laplace approximation
 - Expectation Propagation
 - Variational methods

Laplace Approximation

$$p(\mathbf{f} \mid X, \mathbf{y}) \approx q(\mathbf{f} \mid X, \mathbf{y}) = \mathcal{N}(\mathbf{f} \mid \hat{\mathbf{f}}, A^{-1})$$

where
$$\hat{\mathbf{f}} = \arg\max_{\mathbf{f}} p(\mathbf{f} \mid X, \mathbf{y})$$

and $A = -\nabla\nabla\log p(\mathbf{f} \mid X, \mathbf{y})|_{\mathbf{f} = \hat{\mathbf{f}}}$

second-order
Taylor expansion

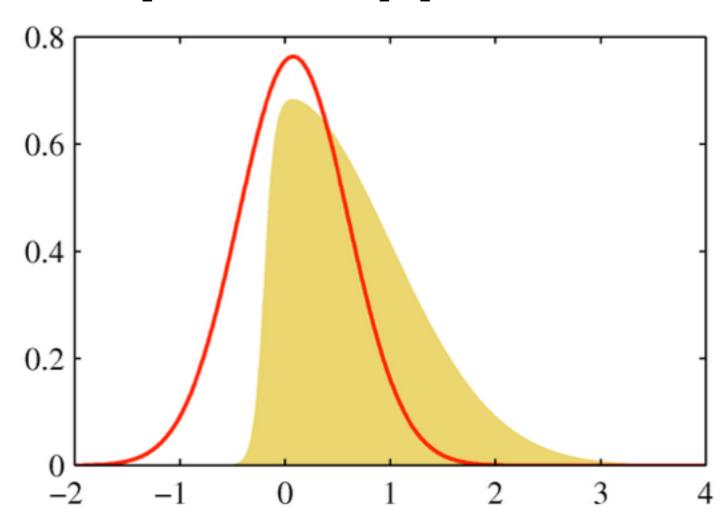
To compute \hat{f} an iterative approach using Newton's method has to be used.

The Hessian matrix A can be computed as

$$A = K^{-1} + W$$

where $W = -\nabla\nabla \log p(\mathbf{y} \mid \mathbf{f})$ is a diagonal matrix which depends on the sigmoid function.

Laplace Approximation



- Yellow: a non-Gaussian posterior
- Red: a Gaussian approximation, the mean is the mode of the posterior, the variance is the negative second derivative at the mode

Predictions

Now that we have $p(\mathbf{f} \mid X, \mathbf{y})$ we can compute:

$$p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f} \mid X, \mathbf{y}) d\mathbf{f}$$

From the regression case we have:

$$p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) = \mathcal{N}(f_* \mid \mu_*, \Sigma_*)$$
 where $\mu_* = \mathbf{k}_*^T K^{-1} \mathbf{f}$
$$\Sigma_* = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T K^{-1} \mathbf{k}_*$$

Linear in f

This reminds us of a property of Gaussians that we saw earlier!

Gaussian Properties (Rep.)

If we are given this:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \mu, \Sigma_1)$$

II.
$$p(\mathbf{y} \mid \mathbf{x}) = \mathcal{N}(\mathbf{y} \mid A\mathbf{x} + \mathbf{b}, \Sigma_2)$$

Then it follows (properties of Gaussians):

III.
$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y} \mid A\mu + \mathbf{b}, \Sigma_2 + A\Sigma_1 A^T)$$

IV.
$$p(\mathbf{x} \mid \mathbf{y}) = \mathcal{N}(\mathbf{x} \mid \Sigma(A^T \Sigma_2^{-1} (\mathbf{y} - \mathbf{b}) + \Sigma_1^{-1} \mathbf{y}), \Sigma)$$

where

$$\Sigma = (\Sigma_1^{-1} + A^T \Sigma_s^{-1} A)^{-1}$$

Applying this to Laplace

$$\mathbb{E}[f_* \mid X, \mathbf{y}, \mathbf{x}_*] = \mathbf{k}(\mathbf{x}_*)^T K^{-1} \hat{\mathbf{f}}$$

$$\mathbb{V}[f_* \mid X, \mathbf{y}, \mathbf{x}_*] = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T (K + W^{-1})^{-1} \mathbf{k}_*$$

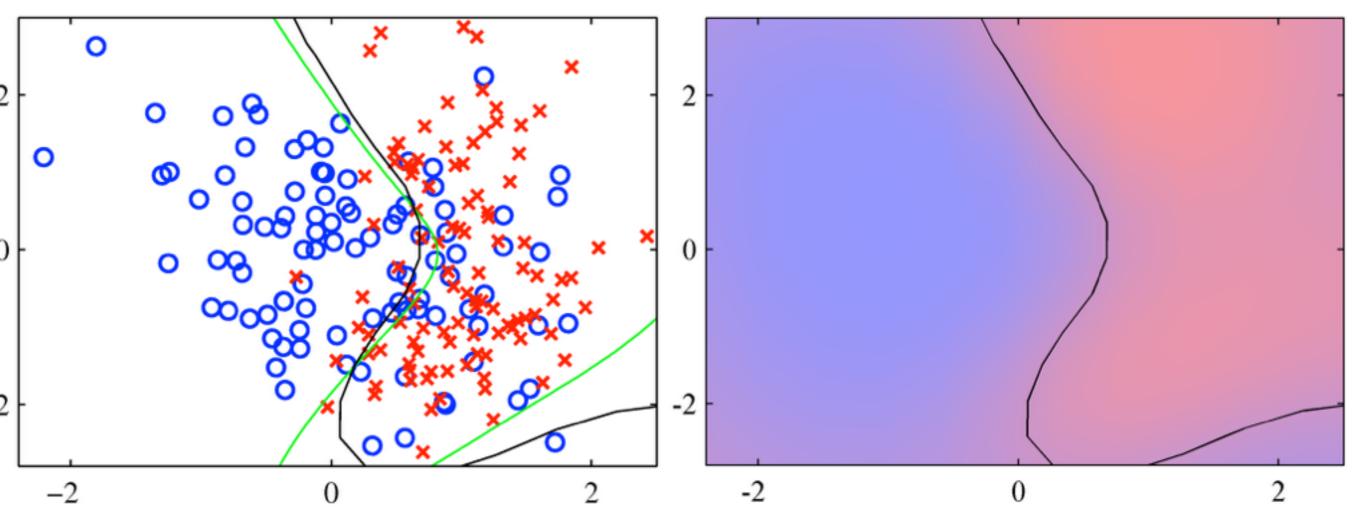
It remains to compute

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

Depending on the kind of sigmoid function we

- can compute this in closed form (cumulative Gaussian sigmoid)
- have to use sampling methods or analytical approximations (logistic sigmoid)

A Simple Example



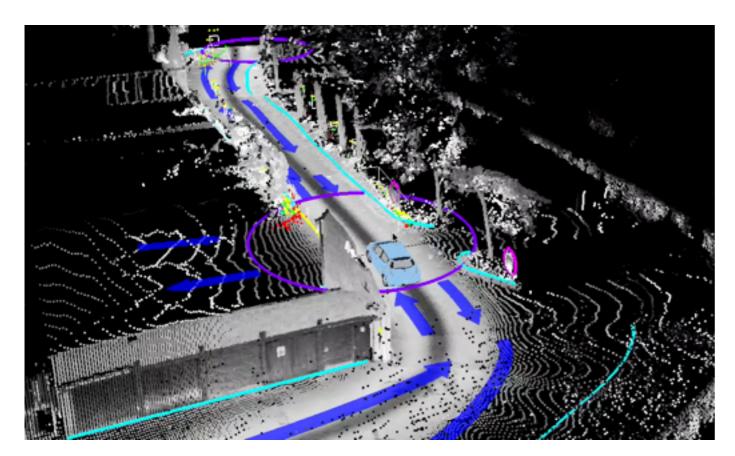
- Two-class problem (training data in red and blue)
- Green line: optimal decision boundary
- Black line: GP classifier decision boundary
- Right: posterior probability

Summary

- Kernel methods solve problems by implicitly mapping the data into a (high-dimensional) feature space
- The feature function itself is not used, instead the algorithm is expressed in terms of the kernel
- Gaussian Processes are Normal distributions over functions
- To specify a GP we need a covariance function (kernel) and a mean function
- More on Gaussian Processes: http://videolectures.net/epsrcws08_rasmussen_lgp/

Application Example: Semantic Mapping

Semantic Mapping



Benchmark data for semantic mapping

Active Learning is well suited for semantic mapping because:

- it can deal with large amounts of data.
- data is not independent.
- the task is essentially an online learning problem.

The Informative Vector Machine

Main differences to standard GP classifier:

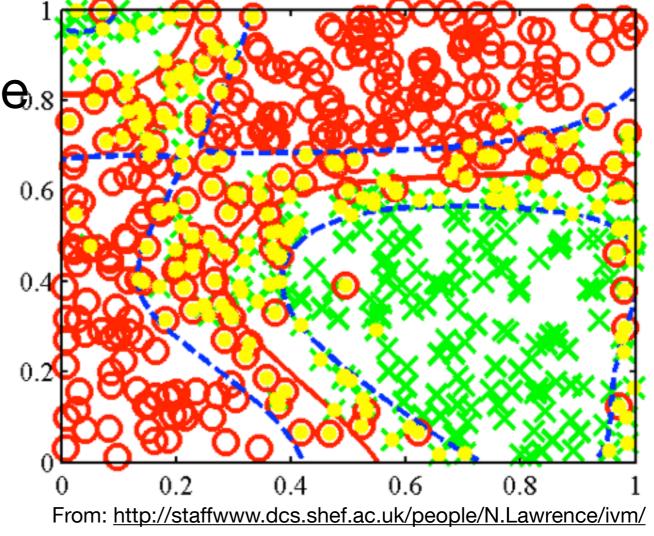
• it only uses a subset ("active set") of training points

the (inverse) posterior covariance matrix is computed

incrementally

Decision of inclusion in the active set based on infornation-theoretic criterion

Slight caveat: Training of hyper-parameters needs to be done iteratively



Active Learning with an IVM

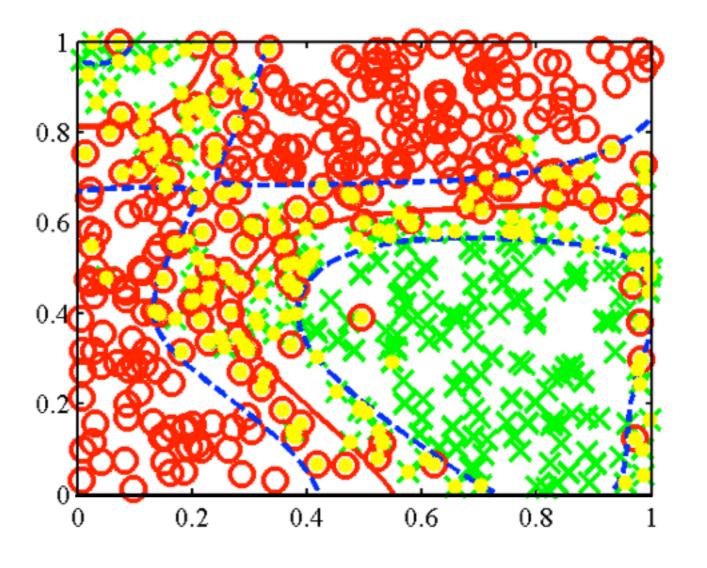
Ongoing Learning algorithm

- New test data arrives
- Classifier predicts a class label and decides if it is uncertain
- The most uncertain points are used for query
- Training set is extended and next training round starts

```
Data: training data (\mathcal{X}, \mathcal{Y}), initial kernel parameters \theta_0, test data \mathcal{X}^*,
               active set size fraction q
i \leftarrow 0
while \mathcal{X}^* \neq \emptyset do
       (\theta_{i+1}, \mathcal{I}_{i+1}) \leftarrow \text{TrainIVM}(\mathcal{X}, \mathcal{V}, q, \theta_i)
       extract next b test points into \mathcal{X}_i^*
       for all the \mathbf{x}^* \in \mathcal{X}^* do
              z \leftarrow \texttt{IVMPrediction}(\mathcal{I}_{i+1}, \theta_{i+1}, \mathbf{x}^*)
             s \leftarrow \mathtt{Compute}ketraınıng\mathtt{score}(z, \mathbf{x}^{\cdot}, \mathcal{A}, \mathcal{Y})
              if s > \vartheta then \mathcal{P} \leftarrow \mathcal{P} \cup \{(\mathbf{x}^*, s)\}
       end
       sort \mathcal{P} by decreasing values of s
       \mathcal{X}^+ \leftarrow \emptyset, \quad \mathcal{Y}^+ \leftarrow \emptyset
       for j \leftarrow 1 to MIN(r, |\mathcal{P}|) do
               (\mathbf{x}_i^+, s_i) \leftarrow \text{element } j \text{ of } \mathcal{P}
              y_i^+ \leftarrow AskLabelFromUser(\mathbf{x}_i^+)
              \mathcal{X}^+ \leftarrow \mathcal{X}^+ \cup \{\mathbf{x}_i^+\}
              \mathcal{Y}^+ \leftarrow \mathcal{Y}^+ \cup \{y_i^+\}
```


Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

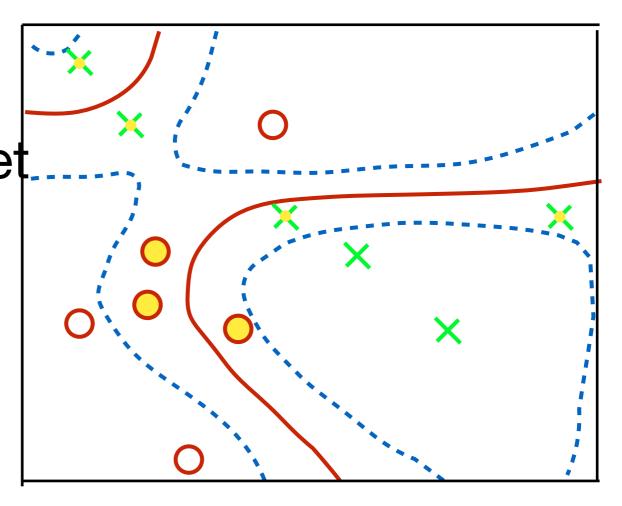


Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set

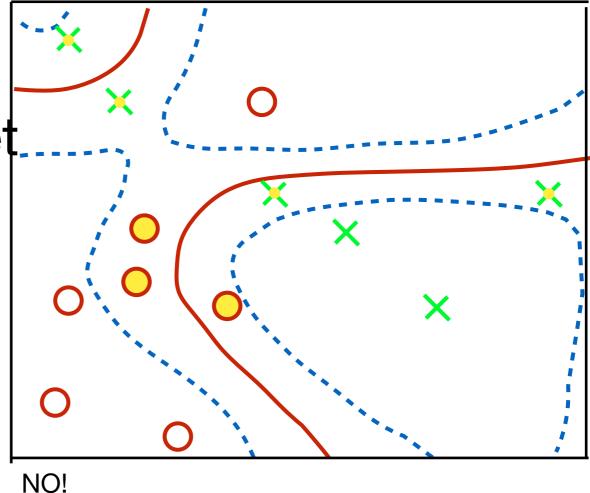


Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set



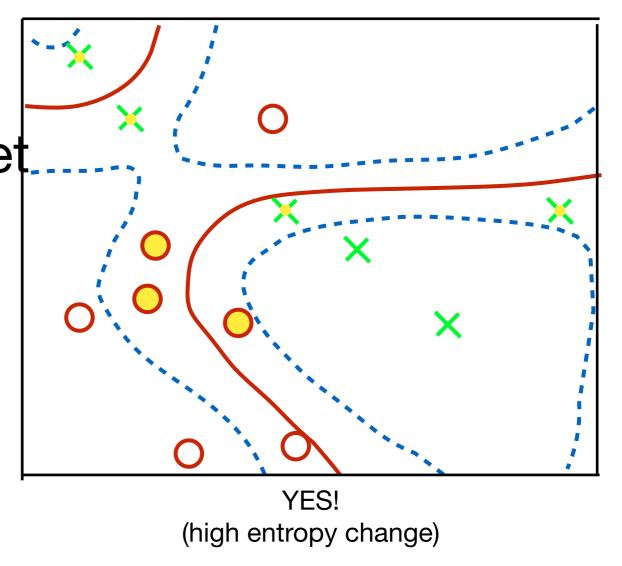
(low entropy change)

Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set



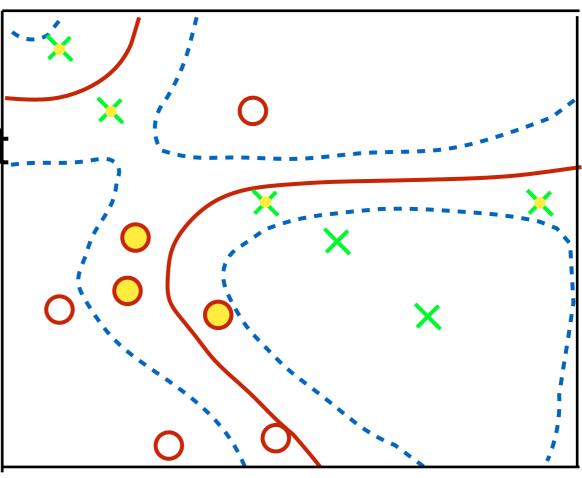
Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set

 use the entropy difference to rate the new point



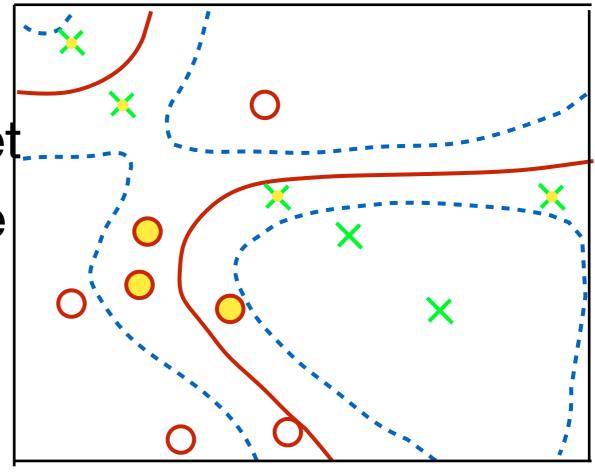
Problem: training data grows continually in every learning round

Idea: constrain the number of training samples

When new point arrives:

 check whether it should be added to the Active Set

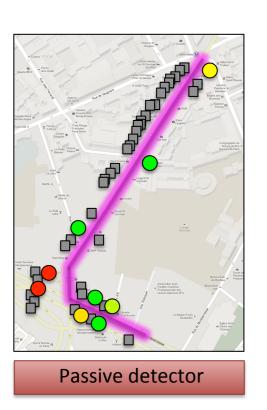
- use the entropy difference to rate the new point
- throw out the point with the lowest rating

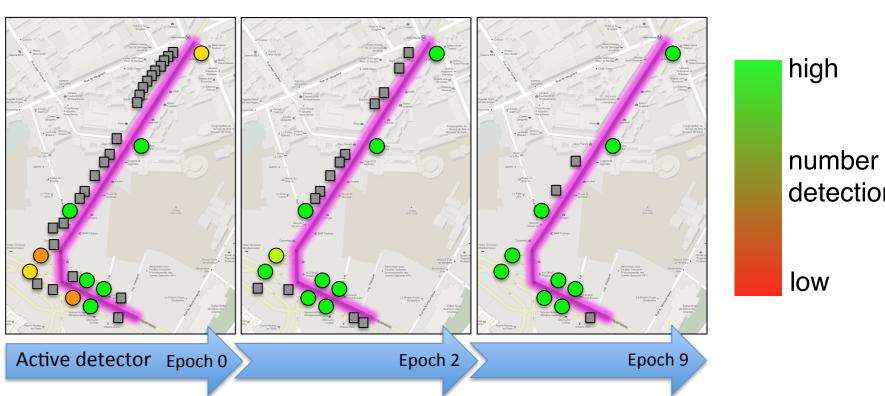


Semantic Mapping: Results (Learning)

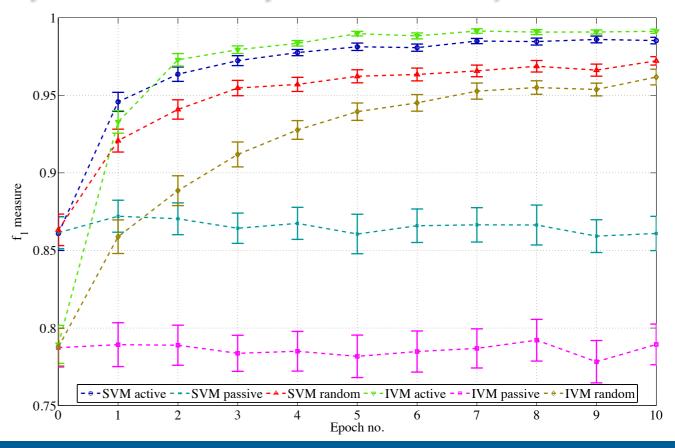
118

- false positives
- true positions

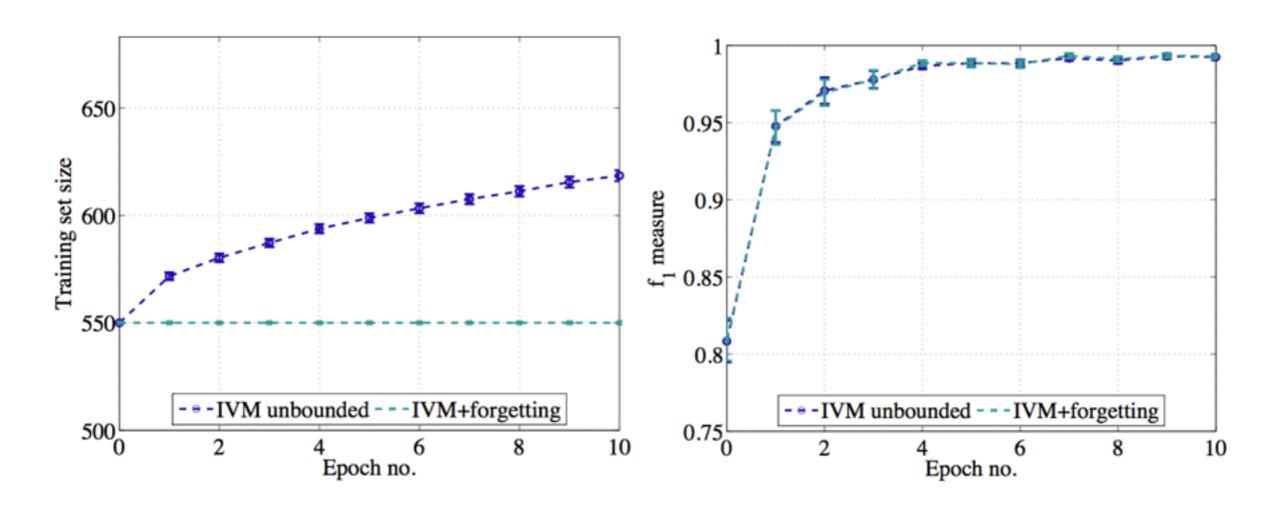




- IVM "overtakes" and stays better than SVM
- Active learning better than passive learning
- Random selection is not better



Semantic Mapping: Results (Forgetting)



Forgetting has almost no influence on the classification result!

Application: Interactive Image Segmentation

