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Topics Covered So Far

• Clustering and Expectation Maximization 

• Kernel Methods and GPs 

• Boosting and Bagging 

• Graphical Models 

• Hidden Markov Models 

• Deep Learning 

• Metric Learning
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Motivation

• Supervised learning is good for interaction with 
humans, but labels from a supervisor are 
sometimes hard to obtain 

• Clustering is unsupervised learning, i.e. it tries to 
learn only from the data 

• Main idea: find a similarity measure and group 
similar data objects together 

• Clustering is a very old research field, many 
approaches have been suggested 

• Main problem in most methods: how to find a 
good number of clusters

4



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for Computer 
Vision

Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

5

learning from a training 
data set, inference on 

the test data

In unsupervised learning, there is no ground truth 
information given. 

Most Unsupervised Learning methods are based on 
Clustering.
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K-means Clustering

• Given: data set                    , number of clusters K 
• Goal: find cluster centers                      so that  
 
 
 
is minimal, where             if      is assigned to       

• Idea: compute       and      iteratively 

• Start with some values for the cluster centers 

• Find optimal assignments 

• Update cluster centers using these assignments 

• Repeat until assignments or centers don’t change 

6

J =
NX

n=1

KX

k=1

rnkkxn � µkk

{x1, . . . ,xN}

{µ1, . . . ,µK}

rnk = 1 xn µk

rnk µk

rnk
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K-means Clustering

7

{µ1, . . . ,µK}Initialize cluster means:
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

K-means Clustering

8

Find optimal assignments:
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@J

@µk

= 2
NX

n=1

rnk(xn � µk)
!
= 0

) µk =

PN
n=1 rnkxnPN
n=1 rnk

K-means Clustering

9

Find new optimal means:
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K-means Clustering
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

Find new optimal assignments:
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K-means Clustering

11

Iterate these steps until means and 
assignments do not change any more
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2D Example

12

• Real data set 
• Random initialization

• Magenta line is “decision 
boundary”
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The Cost Function

• After every step the cost function J is minimized 

• Blue steps: update assignments 

• Red steps: update means 

• Convergence after 4 rounds

13
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K-means for Segmentation

14
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• K-means converges always, but the minimum is 
not guaranteed to be a global one 

• There is an online version of K-means  

•After each addition of xn, the nearest center μk is 

updated: 

• The K-medoid variant: 

•Replace the Euclidean distance by a general measure 
V.

K-Means: Additional Remarks

15

µnew

k = µold

k + ⌘n(xn � µold

k )

J̃ =
NX

n=1

KX

k=1

rnkV(xn,µk)
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Mixtures of Gaussians

• Assume that the data consists of K clusters 

• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 

binary random variable z so that:  
 
 
 
where  

16

zk 2 {0, 1},
KX

k=1

zk = 1

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)
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A Simple Example

• Mixture of three Gaussians with mixing coefficients 

• Left: all three Gaussians as contour plot 

• Right: samples from the mixture model, the red 
component has the most samples

17
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Parameter Estimation

• From a given set of training data                    we 
want to find parameters 
so that the likelihood is maximized (MLE):  
 
 
 
or, applying the logarithm:  

• However: this is not as easy as maximum-
likelihood for single Gaussians!

18

{x1, . . . ,xN}
(⇡1,...,K ,µ1,...,K ,⌃1,...,K)

p(x1, . . . ,xN | ⇡1,...,K ,µ1,...,K ,⌃1,...,K) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

log p(X | ⇡,µ,⌃) =
NX

n=1

log

KX

k=1

⇡kN (xn | µk,⌃k)
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Problems with MLE for Gaussian Mixtures

• Assume that for one k the mean     is exactly at a 
data point 

•For simplicity: assume that  

•Then:   

•This means that the overall log-likelihood can be 
maximized arbitrarily by letting              (overfitting)            

• Another problem is the identifiability: 

•The order of the Gaussians is not fixed, therefore: 

•There are K! equivalent solutions to the MLE problem

19

µk

xn

⌃k = �2
kI

�k ! 0

N (xn | xn,�
2
kI) =

1p
2⇡�D

k
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Overfitting with MLE for Gaussian Mixtures

• One Gaussian fits exactly to one data point 

• It has a very small variance, i.e. contributes 
strongly to the overall likelihood 

• In standard MLE, there is no way to avoid this!

20
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Expectation-Maximization

• EM is an elegant and powerful method for MLE 
problems with latent variables 

• Main idea: model parameters and latent variables 
are estimated iteratively, where average over the 
latent variables (expectation) 

• A typical example application of EM is the 
Gaussian Mixture model (GMM) 

• However, EM has many other applications 

• First, we consider EM for GMMs

21
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Expectation-Maximization for GMM

• First, we define the responsibilities:

22

�(znk) = p(znk = 1 | xn) znk 2 {0, 1}
X

k

znk = 1
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Expectation-Maximization for GMM

• First, we define the responsibilities:

23

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     : 

24

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     :  
 
 
 
and we obtain: 

25

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0

µk =

PN
n=1 �(znk)xnPN
n=1 �(znk)
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where: 
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
n=1 �(znk)(xn � µk)(xn � µk)

T

PN
n=1 �(znk)

⇡k

@log p(X | ⇡,µ,⌃)
@⇡k

!
= 0

KX

k=1

⇡k = 1
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where:  
 
and the result is:  
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
n=1 �(znk)(xn � µk)(xn � µk)

T

PN
n=1 �(znk)

⇡k

@log p(X | ⇡,µ,⌃)
@⇡k

!
= 0

KX

k=1

⇡k = 1

⇡k =
1

N

NX

n=1

�(znk)
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Algorithm Summary

1.Initialize means     covariance matrices     and 
mixing coefficients 

2.Compute the initial log-likelihood 

3. E-Step. Compute the responsibilities:  
 
 

4. M-Step. Update the parameters: 
 

5.Compute log-likelihood; if not converged go to 3.

28

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

�(znk)

log p(X | ⇡,µ,⌃)

µk ⌃k

⇡k

µnew
k =

PN
n=1 �(znk)xnPN
n=1 �(znk)

⌃new
k =

PN
n=1 �(znk)(xn � µnew

k )(xn � µnew
k )T

PN
n=1 �(znk)

⇡new
k =

1

N

NX

n=1

�(znk)
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The Same Example Again

29
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Observations

• Compared to K-means, points can now belong to 
both clusters (soft assignment) 

• In addition to the cluster center, a covariance is 
estimated by EM 

• Initialization is the same as used for K-means 

• Number of iterations needed for EM is much higher 

• Also: each cycle requires much more computation 

• Therefore: start with K-means and run EM on the 
result of K-means (covariances can be initialized to 
the sample covariances of K-means) 

• EM only finds a local maximum of the likelihood!

30
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Variants of EM

• Instead of maximizing the log-likelihood, we can 
use EM to maximize a posterior when a prior is 

given (MAP instead of MLE) ⇒ less overfitting 

• In Generalized EM, the M-step only increases the 
lower bound instead of maximization (useful if 
standard M-step is intractable) 

• Similarly, the E-step can be generalized in that the 
optimization wrt. q is not complete 

• Furthermore, there are incremental versions of EM, 
where data points are given sequentially and the 
parameters are updated after each data point.

31
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• A Radar range finder on a metallic target will 
returns 3 types of measurement: 

•The distance to target 

•The distance to the wall behind the target 

•A completely random value

Example 1: Learn a Sensor Model

32
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• Which point corresponds to from which model? 

• What are the different model parameters? 

• Solution: Expectation-Maximization

Example 1: Learn a Sensor Model

33
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Example 2: Environment Classification

• From each image, the robot extracts  
features: => points in nD space 

• K-means only finds the cluster  
centers, not their extent and shape 

• The centers and covariances can  
be obtained with EM

34



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Example 3: Plane Fitting in 3D

• Has been done in this paper 

• Given a set of 3D points, fit planes into the data 

• Idea: Model parameters    are normal vectors and 
distance to origin for a set of planes 

•  Gaussian noise model: 

• Introduce latent correspondence  
variables        and maximize the expected log-lik.: 

• Maximization can be done in closed form

35

✓

p(z | ✓) = N (d(z, ✓) | 0,�)

point-to-plane 
distance

noise 
variance

Cij

E[log p(Z,C | ✓)]

http://edlab-www.cs.umass.edu/cs589/2010-lectures/thrun.3D-EM.pdf
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Example 3: Plane Fitting in 3D

36
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Affinity Propagation

• Often, we are only given a similarity matrix for 
the data points 

• The idea of Affinity Propagation is to determine 
cluster centers (“exemplars”) that explain other 
data points in an optimal way 

• This is similar to k-medoids, but the algorithm is 
more robust against local minima 

• Idea: each data point must choose another data 
point as its exemplar; some points will choose 
themselves as exemplar 

• The number of clusters is then found automatically

37
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Affinity Propagation

• Input: similarity values s(i,j)   
• Initialize the responsibilities r(i,j), and the 

availabilities a(i,j) to 0 

• do until convergence: 

•recompute the responsibilities: 

•recompute the availabilities: 

• the j that maximizes r(i,j) + a(i,j) is the exemplar of i

38

r(i, j) = s(i, j)�max

j0 6=j
{a(i, j0) + s(i, j0)}

a(i, j) = min

8
<

:0, r(j, j) +
X

i0 /2{i,j}

max{0, r(i0, j)}

9
=

;



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Affinity Propagation

• Intuitively: 

•responsibility measures how much i thinks that j 
would be a good exemplar 

•availability measures how strongly j things it should 

be an exemplar for i 
• The algorithm can be shown to be equivalent to 

max-product loopy belief propagation 

• Convergence is not guaranteed, but with 
“damping” oscillations can be avoided 

• The number of clusters can be controlled by the 
“self-similarity”

39
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Affinity Propagation

• Colours: how much each point wants to be an exemplar 

• Edge strengths: how much a point wants to belong to a 
cluster 

40

Fig 1, Frey & Dueck
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di =
NX

j=1

wij

D =

Spectral Clustering

• Consider an undirected graph that connects all 
data points 

• The edge weights are the similarities (“closeness”) 

• We define the weighted degree    of a node as the 
sum of all outgoing edges

41

W =

di

d1
d2
d3
d4
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvalue 0

42

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite

43

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite 

• With these properties we can show: 

Theorem: The set of eigenvectors of L with 
eigenvalue 0 is spanned by the indicator vectors  
                  , where       are the K connected 
components of the graph.

44

L = D �W

1A1 , . . . ,1AK Ak
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The Algorithm

• Input: Similarity matrix W 

• Compute L = D - W 

• Compute the eigenvectors that correspond to the 
K smallest eigenvalues 

• Stack these vectors as columns in a matrix U 

• Treat each row of U as a K-dim data point 

• Cluster the N rows with K-means clustering 

• The indices of the rows that correspond to the 
resulting clusters are those of the original data 
points.

45
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An Example

• Spectral clustering can handle complex problems 
such as this one 

• The complexity of the algorithm is O(N ), because 
it has to solve an eigenvector problem 

• But there are efficient variants of the algorithm

46
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Further Remarks

• To account for nodes that are highly connected, 
we can use a normalized version of the graph 
Laplacian 

• Two different methods exist: 

•    

•    

• These have similar eigenspaces than the original 
Laplacian L 

• Clustering results tend to be better than with the 
unnormalized Laplacian

47

Lrw = D�1L = I �D�1W

Lsym = D� 1
2LD� 1

2 = I �D� 1
2WD� 1

2
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Online Star Clustering

• clusters consist of centers and satellites,  
connected to each other by edges

• normalized cosine distance is used to  
compute the similarities between features

• number of clusters is inferred automatically 
and depends on a similarity threshold σ

• new elements are inserted incrementally  
without rearranging the entire data structure

• insertion time is asymptotically linear in the 
size of the graph

• star-subgraph geometry ensures high 
expected                                                                    
satellite similarity, implying dense clustering

48

star cluster graph

after insertion

new cluster centers
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Example 4: Online Scene Labeling

49

Given: 3D Point Cloud Data Aim: Clustering



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Example 4: Online Scene classification

50

after 2 point clouds: 2 
discovered clusters after 4 point clouds: 3 

discovered clusters

after 17 point clouds: 6 discovered clusters
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Hierarchical Clustering

• Often, we want to have nested clusters instead of 
a “flat” clustering 

• Two possible methods: 

•“bottom-up” or agglomerative clustering 

•“top-down” or divisive clustering 

• Both methods take a dissimilarity matrix as input 

• Bottom-up grows merges points to clusters 

• Top-down splits clusters into sub-clusters 

• Both are heuristics, there is no clear objective 
function 

• They always produce a clustering (also for noise) 
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Agglomerative Clustering

• Start with N clusters, each contains exactly one 
data point 

• At each step, merge the two most similar groups 

• Repeat until there is a single group
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Linkage

• In agglomerative clustering, it is important to 
define a distance measure between two clusters 

• There are three different methods: 

•Single linkage: considers the two closest elements 
from both clusters and uses their distance 

•Complete linkage: considers the two farthest 
elements from both clusters 

•Average linkage: uses the average distance between 
pairs of points from both clusters 

• Depending on the application, one linkage should 
be preferred over the other

53



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Single Linkage

• The distance is based on 

• The resulting dendrogram is a minimum spanning 
tree, i.e. it minimizes the sum of the edge weights 

• Thus: we can compute the clustering in O(N ) time
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dCL(G,H) = max

i2G,i02H
di,i0

Complete Linkage

• The distance is based on 

• Complete linkage fulfills the compactness 
property, i.e. all points in a group should be 
similar to each other 

• Tends to produce clusters with smaller diameter
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Average Linkage

• The distance is based on 

• Is a good compromise between single and 
complete linkage 

• However: sensitive to changes on the meas. scale
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Divisive Clustering

• Start with all data in a single cluster 

• Recursively divide each cluster into two child 
clusters 

• Problem: optimal split is hard to find 

• Idea: use the cluster with the largest diameter and 
use K-means with K = 2 

• Or: use minimum-spanning tree and cut links with 
the largest dissimilarity 

• In general two advantages: 

•Can be faster 

•More globally informed (not myopic as bottom-up)
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Choosing the Number of Clusters

• As in general, choosing the number of clusters is 
hard 

• When a dendrogram is available, a gap can be 
detected in the lengths of the links 

• This represents the dissimilarity between merged 
groups 

• However: in real data this can be hard to detect 

• There are Bayesian techniques to address this 
problem (Bayesian hierarchical clustering)
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Evaluation of Clustering Algorithms

• Clustering is unsupervised: evaluation of the 
output is hard, because no ground truth is given 

• Intuitively, points in a cluster should be similar and 
points in different clusters dissimilar 

• However, better methods use external information, 
such as labels or a reference clustering 

• Then we can compare clusterings with the labels 
using different metrics, e.g.  

•purity 

•mutual information
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Purity

• Define       the number of objects in cluster i that 
are in class j 

• Define                     number of objects in cluster i 

•                                          “Purity” 

• overall purity 

• Purity ranges from 0 (bad) to 1 (good) 

• But: a clustering with each object in its own 
cluster has a purity of 1
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Mutual Information

• Let U and V be two clusterings 

• Define the probability that a randomly chosen 

point belongs to cluster     in U and to     in V 

• Also: The prob. that a point is in 

• This can be normalized to account for many small 
clusters with low entropy 
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Summary

• Several Clustering methods exist: 

•K-means clustering and Expectation-Maximization, 
both based on Gaussian Mixture Models  

•K-means uses hard assignments, whereas EM uses 
soft assignments and estimates also the covariances 

•Spectral clustering uses the graph Laplacian and 
performs an eigenvector analysis 

• Major Problem:  

•most clustering algorithms require the number of 
clusters to be given
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Motivation

• Usually learning algorithms assume that some 
kind of feature function is given 

• Reasoning is then done on a feature vector of a 
given (finite) length 

• But: some objects are hard to represent with a 
fixed-size feature vector, e.g. text documents, 
molecular structures, evolutionary trees 

• Idea: use a way of measuring similarity without 
the need of features, e.g. the edit distance for 
strings 

• This we will call a kernel function
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This is called the dual formulation. 

The solution to the dual problem is: 

65

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This we can use to make predictions: 

(now x is unknown and a is given from training)
66

y(x) = w

T�(x) = a

T��(x) = k(x)T (K + �IN )�1
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y(x) = k(x)T (K + �IN )�1
t

Dual Representation

where:  

Thus, y is expressed only in terms of dot products 
between different pairs of        , or in terms of the 
kernel function  
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k(x) =

0

B@
�(x1)T�(x)

...
�(xN )T�(x)

1

CA

�(x)

K =

0

B@
�(x1)T�(x1) . . . �(x1)T�(xN )

...
. . .

...
�(xN )T�(x1) . . . �(xN )T�(xN )

1

CA

k(xi,xj) = �(xi)
T�(xj)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Representation using the Kernel

Now we have to invert a matrix of size            , 

before it was             where            , but: 

By expressing everything with the kernel 
function, we can deal with very high-dimensional 
or even infinite-dimensional feature spaces! 

Idea: Don’t use features at all but simply define a 
similarity function expressed as the kernel!
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y(x) = k(x)T (K + �IN )�1
t

N ⇥N

M ⇥M M < N
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Constructing Kernels

The straightforward way to define a kernel function is to 
first find a basis function        and to define: 

This means, k is an inner product in some space    , i.e: 

1.Symmetry: 

2.Linearity: 

3.Positive definite:                       , equal if  

Can we find conditions for k under which there is a 
(possibly infinite dimensional) basis function into    , 

where k is an inner product? 
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k(xi,xj) = �(xi)
T�(xj)

�(x)

H
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Constructing Kernels

Theorem (Mercer): If k is  

1.symmetric, i.e.                                 and 

2.positive definite, i.e.  
 
 
 
 
is positive definite, then there exists a mapping       

into a feature space     so that k can be expressed 
as an inner product in    . 

This means, we don’t need to find         explicitly! 

We can directly work with k 
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Application Examples

Kernel Methods can be applied for many different 
problems, e.g.: 

• Density estimation (unsupervised learning) 

• Regression 

• Principal Component Analysis (PCA) 

• Classification 

Most important Kernel Methods are 

• Support Vector Machines 

• Gaussian Processes
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Kernelization

• Many existing algorithms can be converted into 
kernel methods 

• This process is called “kernelization” 

Idea: 

• express similarities of data points in terms of an 
inner product (dot product) 

• replace all occurrences of that inner product by 
the kernel function 

This is called the kernel trick 
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance

73

kxi � xjk2 = x

T
i xi + x

T
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance 

• We can now replace the dot products by a valid 
Mercer kernel and we obtain: 

• This is a kernelized nearest-neighbor classifier 

• We do not explicitly compute feature vectors!

74

kxi � xjk2 = x

T
i xi + x

T
j xj � 2xT

i xj

d(xi,xj)
2 = k(xi,xi) + k(xj ,xj)� 2k(xi,xj)
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Back to Linear Regression

We had the primal and the dual formulation: 

with the dual solution: 

This we can use to make predictions (MAP): 
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Observations

•We have found a way to predict function values 

of y for new input points x 

•As we used regularized regression, we can 
equivalently find the predictive distribution by 

marginalizing out the parameters w 
Questions: 

•Can we find a closed form for that distribution? 

•How can we model the uncertainty of our 
prediction? 

•Can we use that for classification?
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Definition

Definition: A Gaussian process is a collection of 
random variables, any finite number of which have 
a joint Gaussian distribution. 

The number of random variables can be infinite! 

This means: a GP is a Gaussian distribution over 
functions! 

To specify a GP we need: 

mean function:   

covariance function: 
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m(x) = E[y(x)]

k(x1,x2) = E[y(x1)�m(x1)y(x2)�m(x2)]
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Example

•green line: sinusoidal data source 

•blue circles: data points with Gaussian noise 

•red line: mean function of the Gaussian 
process 

78
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Sampling from a GP

Squared exponential kernel

79

Exponential kernel
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Prediction with a Gaussian Process

Most often we are more interested in predicting 
new function values for given input data. 

We have:  

training data 

test input 

And we want test outputs 

The joint probability is 

and we need to compute                       .    
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Prediction with a Gaussian Process

In the case of only one test point      we have 

Now we compute the conditional distribution 

where 

This defines the predictive distribution.
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Example

Functions sampled from  
a Gaussian Process prior
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The predictive distribution is itself a Gaussian process. 

It represents the posterior after observing the data. 

The covariance is low in the vicinity of data points.
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Varying the Hyperparameters

•20 data samples 

•GP prediction with  
different kernel 
hyper parameters
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Varying the Hyperparameters

The squared exponential covariance function can 
be generalized to 

where M can be: 

•                 : this is equal to the above case 

•                                     : every feature dimension 
has its own length scale parameter 

•                                               : here Λ has less than 

D columns
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Varying the Hyperparameters
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Implementation

•Cholesky decomposition is numerically stable 

•Can be used to compute inverse efficiently
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Algorithm 1: GP regression

Data: training data (X,y), test data x⇤
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2
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Estimating the Hyperparameters

To find optimal hyper parameters we need the 
marginal likelihood: 

This expression implicitly depends on the hyper 

parameters, but y and X are given from the 
training data. It can be computed in closed form, 
as all terms are Gaussians.  

We take the logarithm, compute the derivative 

and set it to 0. This is the training step.
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p(y | X) =

Z
p(y | f , X)p(f | X)df
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Estimating the Hyperparameters

The log marginal likelihood is 
not necessarily concave, i.e. it 
can have local maxima. 

The local maxima can 
correspond to sub-optimal 
solutions.
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Automatic Relevance Determination

•We have seen how the covariance function can 

be generalized using a matrix M 

•If M is diagonal this results in the kernel function  

•We can interpret the     as weights for each 
feature dimension 

•Thus, if the length scale              of an input 
dimension is large, the input is less relevant 

•During training this is done automatically
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Automatic Relevance Determination

During the optimization process to learn the 
hyper-parameters, the reciprocal length scale for 
one parameter decreases, i.e.: 

This hyper parameter is not very relevant!
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Gaussian Processes For Classification

In regression we have          , in binary 
classification we have   

To use a GP for classification, we can apply a 
sigmoid function to the posterior obtained from 
the GP and compute the class probability as: 

If the sigmoid function is symmetric: 
then we have                            . 

A typical type of sigmoid function is the logistic 
sigmoid: 
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y 2 R
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�(�z) = 1� �(z)
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Application of the Sigmoid Function

Function sampled from  
a Gaussian Process

93

Sigmoid function applied to 
the GP function

Another symmetric sigmoid function is the 
cumulative Gaussian:

�(z) =

Z z

�1
N (x | 0, 1)dx
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Visualization of Sigmoid Functions

The cumulative Gaussian is slightly steeper than 
the logistic sigmoid

94
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The Latent Variables

In regression, we directly estimated f as 
 
and values of f where observed in the training 

data. Now only labels +1 or -1 are observed and 

f  is treated as a set of latent variables. 

A major advantage of the Gaussian process 

classifier over other methods is that it 

marginalizes over all latent functions rather 

than maximizing some model parameters.
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f(x) ⇠ GP(m(x), k(x,x0))
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Class Prediction with a GP

The aim is to compute the predictive distribution

96

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

predictive distribution of the 
latent variable (from regression)
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data: 

we need the posterior over the latent variables:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
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A Simple Example

•Red: Two-class training data 

•Green: mean function of 

•Light blue: sigmoid of the mean function 
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p(f | X,y)
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But There Is A Problem...

•The likelihood term is not a Gaussian! 

•This means, we can not compute the 
posterior in closed form. 

•There are several different solutions in the 
literature, e.g.: 

•Laplace approximation 

•Expectation Propagation 

•Variational methods
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p(f | X,y) =
p(y | f)p(f | X)

p(y | X)
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Laplace Approximation

where 

and  

To compute    an iterative approach using 
Newton’s method has to be used. 

The Hessian matrix A can be computed as 

where                                  is a diagonal matrix 
which depends on the sigmoid function.
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p(f | X,y) ⇡ q(f | X,y) = N (f | f̂ , A�1)

ˆf = argmax

f
p(f | X,y)

A = �rr log p(f | X,y)|f=f̂

second-order 
Taylor expansion

f̂

A = K�1 +W

W = �rr log p(y | f)
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Laplace Approximation

•Yellow: a non-Gaussian posterior 

•Red: a Gaussian approximation, the mean is 
the mode of the posterior, the variance is the 
negative second derivative at the mode
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Now that we have                 we can compute:  

From the regression case we have:  

where 

This reminds us of a property of Gaussians that 
we saw earlier!

p(f | X,y)
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Predictions
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p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

⌃⇤ = k(x⇤,x⇤)� k

T
⇤ K

�1
k⇤

p(f⇤ | X,x⇤, f) = N (f⇤ | µ⇤,⌃⇤)

µ⇤ = kT
⇤ K

�1f

Linear in f
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Gaussian Properties (Rep.)

If we are given this: 

                  I. 

                  II. 

Then it follows (properties of Gaussians): 

     III. 

     IV. 

where 
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p(x) = N (x | µ,⌃1)

p(y | x) = N (y | Ax+ b,⌃2)

p(y) = N (y | Aµ+ b,⌃2 +A⌃1A
T )

p(x | y) = N (x | ⌃(AT⌃�1
2 (y � b) + ⌃�1

1 y),⌃)

⌃ = (⌃�1
1 +AT⌃�1

s A)�1



V[f⇤ | X,y,x⇤] = k(x⇤,x⇤)� k

T
⇤ (K +W�1)�1

k⇤
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Applying this to Laplace

It remains to compute  

Depending on the kind of sigmoid function we 

• can compute this in closed form (cumulative 
Gaussian sigmoid) 

• have to use sampling methods or analytical 
approximations (logistic sigmoid)
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E[f⇤ | X,y,x⇤] = k(x⇤)
TK�1

f̂

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤
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A Simple Example

•Two-class problem (training data in red and blue) 

•Green line: optimal decision boundary 

•Black line: GP classifier decision boundary 

•Right: posterior probability
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Summary 

• Kernel methods solve problems by implicitly mapping 
the data into a (high-dimensional) feature space 

• The feature function itself is not used, instead the 
algorithm is expressed in terms of the kernel 

• Gaussian Processes are Normal distributions over 
functions 

• To specify a GP we need a covariance function 
(kernel) and a mean function 

• More on Gaussian Processes: 
http://videolectures.net/epsrcws08_rasmussen_lgp/
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Computer Vision Group  
Prof. Daniel Cremers

Application Example:  
Semantic Mapping
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Semantic Mapping

Active Learning is well suited for semantic mapping because: 

• it can deal with large amounts of data. 

• data is not independent. 

• the task is essentially an online learning problem.
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Hand-crafted 3D semantic map Benchmark data for semantic mapping
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The Informative Vector Machine

Main differences to standard GP classifier: 

• it only uses a subset (“active set”) of training points 

• the (inverse) posterior covariance matrix is computed 
incrementally 

Decision of inclusion in the  
active set based on infor-  
nation-theoretic criterion 

Slight caveat: Training of  
hyper-parameters needs 
to be done iteratively

110

From: http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/ivm/

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/ivm/
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Active Learning with an IVM

Ongoing Learning algorithm 

• New test data arrives 

• Classifier predicts a  
class label and decides 
if it is uncertain 

• The most uncertain  
points are used for query 

• Training set is extended 
and next training round  
starts

111

Data: training data (X ,Y), initial kernel parameters ✓0, test data X ⇤
,

active set size fraction q
i 0

while X ⇤ 6= ; do
(✓i+1, Ii+1) TrainIVM(X ,Y, q, ✓i)
extract next b test points into X ⇤

i

P  ;
forall the x

⇤ 2 X ⇤
i do

z  IVMPrediction(Ii+1, ✓i+1,x⇤
)

s ComputeRetrainingScore(z,x⇤,X ,Y)
if s > # then P  P [ {(x⇤, s)}

end

sort P by decreasing values of s
X+  ;, Y+  ;
for j  1 to MIN(r, |P|) do

(x

+
j , sj) element j of P

y+j  AskLabelFromUser (x

+
j )

X+  X+ [ {x+
j }

Y+  Y+ [ {y+j }
end

X  X [ X+

Y  Y [ Y+

i i+ 1

end
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set
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NO!  
(low entropy change)
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set
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YES!  
(high entropy change)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set 

• use the entropy difference 
to rate the new point
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Memory Efficiency

Problem: training data grows continually in every 
learning round 

Idea: constrain the number of training samples 

When new point arrives: 

• check whether it should 
be added to the Active Set 

• use the entropy difference 
to rate the new point 

• throw out the point with  
the lowest rating 
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Semantic Mapping: Results (Learning)

• IVM “overtakes” and 
stays better than SVM 

• Active learning better 
than passive learning 

• Random selection is 
not better 
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Semantic Mapping: Results (Forgetting)

Forgetting has almost no influence on the 
classification result!
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Application: Interactive Image Segmentation
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Initial scribbles

Final segmentation

Uncertainties

New scribbles

First segmentation

Next segmentation
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