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Introduction Objectives

Objectives
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Poisson Equation

Introduction
Objectives

Objectives

• Mathematical basics

– Differentiation on R2

– Random Walkers

• What is the Poisson Equation?

• Corner and Skeleton detection

• Classification using decision trees



Introduction Laplace operator

Gradient

The gradient is defined for scalar functions and points into the direction of the
greatest slope.
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It can be calculated by partial
differentiation:

grad fx,y =

( ∂
∂x
∂
∂y

)
fx,y

with f being a scalar field.

Manuel Mende (Shape Analysis) Poisson Equation 30.11.2016 3 / 24



Introduction Laplace operator

Divergence
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The divergence is defined for vector
fields. It produces a scalar indicating
the flow within a region.

Differentiating allows to compute the
divergence:

div vx,y = (
∂

∂x
,
∂

∂y
)vx,y

with v being a vector field.
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Poisson Equation

Introduction
Laplace operator

Divergence

Div describes the flow of values:

• We see a vector field

• div provides to any vector a scalar

• this scalar represents the flow in this region

• whether the point is source, sink or invariant

• We see: any point acts as a source (right/upper arrows are longer)

• differentiating computes the divergence



Introduction Laplace operator

Divergence
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Introduction Laplace operator

Laplace operator

The Laplacian ∆ assigns the divergence of the gradient to any point of the
function f :

∆f = div(grad(f )) (1)

while f can be differentiated twice and is a real-valued function. The result would
be

∆f =
∂2

∂x2
f +

∂2

∂y2
f = f(xx) + f(yy) (2)
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Introduction Discrete Laplacian

Discrete differentiation (on R)

Differentiation also works on a discrete mesh1

Ux−1 Ux Ux+1

U ′x− U ′x+

U ′′x

The first derivatives would be

U ′x− =
Ux − Ux−h

h

U ′x+ =
Ux+h − Ux

h

The second differentiation step yields

U ′′x =
U ′x+ − U ′x−

h
=

Ux+h − 2Ux + Ux−h

h2

1In this example only on R
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Introduction Discrete Laplacian

Discrete differentiation(on R2)

The same procedure can be applied for functions on R2:

∆Ux,y =
Ux+h,y + Ux−h,y + Ux,y+h + Ux,y−h − 4Ux,y

h2 Ux−h,y Ux,y Ux+h,y

Ux,y−h

Ux,y+h

which can be rewritten as

∆Ux,y = − 4

h2
·
[
Ux,y −

1

4
(Ux+h,y + Ux−h,y + Ux,y+h + Ux,y−h)

]
(3)

(3) is a discrete form of the Laplace operator (2): ∆f = f(xx) + f(yy)
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Introduction Random walker

Random walker

Random walkers execute random steps

One random walk is executed recursively

We start at a point and execute random
steps until a boundary is hit

Averaging various random executions leads
to a measure

Consider a shape S

And a function U(x , y) assigning this
averaged value to any point in S

The points at the boundaries – denoted by
∂S – satisfy U(x , y) = 0

This random walker leads to the mean time to
hit a boundary measure
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Introduction Random walker

Mean time to boundary measure

Ux,y

Ux,y+1

Ux+1,y

Ux,y−1

Ux−1,y

When we are on the boundary, the
solution is zero

Otherwise we can use probabilistic
inference: We can visit each
neighbour with a probability of 1

4

Ux,y = h +
1

4
(Ux+h,y + Ux−h,y + Ux,y+h + Ux,y−h) (4)
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Introduction Random walker

Mean time to boundary measure

Another representation of the mean time to boundary measure is

h = Ux,y −
1

4
(Ux+h,y + Ux−h,y + Ux,y+h + Ux,y−h)

which can be rewritten by using the discrete laplacian, yielding

∆Ux,y = −4h

h2
(5)
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Introduction The Poisson Equation

The Poisson Equation

The Poisson Equation is a differential equation which is defined as

−∆U = f

with the solution U and a function f . Especially (5)

∆Ux,y = −4h

h2

is an instance of this equation.
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Introduction The Poisson Equation

Properties of the Poisson Equation

Optaining a solution requires boundary
conditions, which are stated as
∀(x , y) ∈ ∂S : U(x , y) = 0

The Level-Sets in this representation provide
smoother versions of the boundaries

Since many boundary points are considered –
not only the euclidean distance – more global
properties are available
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Extractable properties

Applications of the Poisson Equation

The solution to the Poisson Equation can be used to compute various helpful
properties, among them

Corners with concave regions on a shape

Skeletons, the most central part of a shape

Manuel Mende (Shape Analysis) Poisson Equation 30.11.2016 14 / 24



Extractable properties Corners

Corners

Corners occur at curved regions:

Curvature of a level set can be approximated
by a tangential circle

It describes how much the direction changes

The divergence of the normal field is
proportional to the curvature

The formula

Ψ = −div
[

grad(U)

‖grad(U)‖

]
(6)

can be employed to compute the curvature 20 40 60 80 100
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Poisson Equation

Extractable properties

Corners
Corners

The curvature describes, how much the direction of a curve changes. This can
be accomplished by calculating the divergence of the normal field on the curve.

Since the normal field of the curve is rectangular to the curve and

(∂x , ∂y) × vset is the trace of the hessian – which sum is independent of the

koordinate system – we can simply compute the laplacian at any point in the

original koordinate system and optain the cuvature



Extractable properties Corners

Real Corners
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Extractable properties Skeletons

Skeletons

Skeleton computation depends on three values:

Ψ̃ =
U ·Ψ

‖grad(U)‖
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U removes locations at the
boundary

‖grad(U)‖ includes the ridgid
regions

Ψ includes the influence of the
ridgid regions
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Poisson Equation

Extractable properties

Skeletons
Skeletons

Influence of the terms:

• Since the values of U are small there

• Since the gradient is very low

• Since the value for ridgid regions is highly positive, especially because of the
division by the abs grad value



Extractable properties Skeletons

Influence of the terms

Ψ̃ =
U ·Ψ

‖grad(U)‖
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Extractable properties Skeletons

Real Skeletons
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Skeletons computed with Ψ̃ and thresholded with the mean values of the shape.
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Classification

Classification

This properties can be used to compute features/measures that can be used to
classify shapes

Manuel Mende (Shape Analysis) Poisson Equation 30.11.2016 20 / 24



Classification Decision trees

Decision trees

Binary decision trees

represent knowledge about a domain

can be used to infer properties about
unknown objects, e.g. a label for a shape

are derived by using a trainings set

Each edge represents a set of features, each leaf
represents a class.
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Classification Training the classifier

Training the classifier

Each sample is represented by a high
dimensional feature vector

Splitting is achieved by projecting data onto
a line
and

Applying a threshold to separate the data

The ideal combination of both – direction w
and threshold t – splits the data

A split is considered good, if the mixture in
the subsets is reduced

w
t
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Classification Training the classifier

Results of Classification
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Conclusion

Conclusion

There is a discrete form of the Laplace operator

It can be used to solve the Poisson Equation on a discrete grid

This solution is equivalent to a random walker measure

It can be used to compute interesting properties of a shape

Those properties can be used to classify shapes using decision trees
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Thank you for your attention!
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