Image segmentation and classification using the Poisson Equation

Manuel Mende
Shape Analysis
30.11.2016

Objectives

Horse?

- Mathematical basics
- Differentiation on \mathbb{R}^{2}
- Random Walkers
- What is the Poisson Equation?
- Corner and Skeleton detection
- Classification using decision trees

Gradient

The gradient is defined for scalar functions and points into the direction of the greatest slope.

It can be calculated by partial differentiation:

$$
\operatorname{grad} f_{x, y}=\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}} f_{x, y}
$$

with f being a scalar field.

Divergence

The divergence is defined for vector fields. It produces a scalar indicating the flow within a region.

Differentiating allows to compute the divergence:

$$
\operatorname{div} v_{x, y}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) v_{x, y}
$$

with v being a vector field.

Divergence

The divergence is defined for vector fields. It produces a scalar indicating the flow within a region.
Differentiating allows to compute the divergence
$\operatorname{div} v_{x, y}=\left(\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial y}\right) v_{x, y}$ with v being a vector field.

Div describes the flow of values:

- We see a vector field
- div provides to any vector a scalar
- this scalar represents the flow in this region
- whether the point is source, sink or invariant
- We see: any point acts as a source (right/upper arrows are longer)
- differentiating computes the divergence

Divergence

Laplace operator

The Laplacian Δ assigns the divergence of the gradient to any point of the function f :

$$
\begin{equation*}
\Delta f=\operatorname{div}(\operatorname{grad}(f)) \tag{1}
\end{equation*}
$$

while f can be differentiated twice and is a real-valued function. The result would be

$$
\begin{equation*}
\Delta f=\frac{\partial^{2}}{\partial x^{2}} f+\frac{\partial^{2}}{\partial y^{2}} f=f_{(x x)}+f_{(y y)} \tag{2}
\end{equation*}
$$

Discrete differentiation (on \mathbb{R})

Differentiation also works on a discrete mesh ${ }^{1}$

The first derivatives would be

$$
\begin{aligned}
& U_{x^{-}}^{\prime}=\frac{U_{x}-U_{x-h}}{h} \\
& U_{x^{+}}^{\prime}=\frac{U_{x+h}-U_{x}}{h}
\end{aligned}
$$

The second differentiation step yields

$$
U_{x}^{\prime \prime}=\frac{U_{x^{+}}^{\prime}-U_{x^{-}}^{\prime}}{h}=\frac{U_{x+h}-2 U_{x}+U_{x-h}}{h^{2}}
$$

[^0]
Discrete differentiation(on \mathbb{R}^{2})

The same procedure can be applied for functions on \mathbb{R}^{2} :

$$
\Delta U_{x, y}=\frac{U_{x+h, y}+U_{x-h, y}+U_{x, y+h}+U_{x, y-h}-4 U_{x, y}}{h^{2}}
$$

which can be rewritten as

$$
\begin{equation*}
\Delta U_{x, y}=-\frac{4}{h^{2}} \cdot\left[U_{x, y}-\frac{1}{4}\left(U_{x+h, y}+U_{x-h, y}+U_{x, y+h}+U_{x, y-h}\right)\right] \tag{3}
\end{equation*}
$$

(3) is a discrete form of the Laplace operator (2): $\Delta f=f_{(x x)}+f_{(y y)}$

Random walker

Random walkers execute random steps

- One random walk is executed recursively
- We start at a point and execute random steps until a boundary is hit
- Averaging various random executions leads to a measure
- Consider a shape S
- And a function $U(x, y)$ assigning this averaged value to any point in S
- The points at the boundaries - denoted by
 ∂S - satisfy $U(x, y)=0$
This random walker leads to the mean time to hit a boundary measure

Mean time to boundary measure

- When we are on the boundary, the solution is zero
- Otherwise we can use probabilistic inference: We can visit each neighbour with a probability of $\frac{1}{4}$

$$
\begin{equation*}
U_{x, y}=h+\frac{1}{4}\left(U_{x+h, y}+U_{x-h, y}+U_{x, y+h}+U_{x, y-h}\right) \tag{4}
\end{equation*}
$$

Mean time to boundary measure

Another representation of the mean time to boundary measure is

$$
h=U_{x, y}-\frac{1}{4}\left(U_{x+h, y}+U_{x-h, y}+U_{x, y+h}+U_{x, y-h}\right)
$$

which can be rewritten by using the discrete laplacian, yielding

$$
\begin{equation*}
\Delta U_{x, y}=-\frac{4 h}{h^{2}} \tag{5}
\end{equation*}
$$

The Poisson Equation

The Poisson Equation is a differential equation which is defined as

$$
-\Delta U=f
$$

with the solution U and a function f. Especially (5)

$$
\Delta U_{x, y}=-\frac{4 h}{h^{2}}
$$

is an instance of this equation.

Properties of the Poisson Equation

- Optaining a solution requires boundary conditions, which are stated as
$\forall(x, y) \in \partial S: U(x, y)=0$
- The Level-Sets in this representation provide smoother versions of the boundaries
- Since many boundary points are considered not only the euclidean distance - more global properties are available

Applications of the Poisson Equation

The solution to the Poisson Equation can be used to compute various helpful properties, among them

- Corners with concave regions on a shape
- Skeletons, the most central part of a shape

Corners

Corners occur at curved regions:

- Curvature of a level set can be approximated by a tangential circle
- It describes how much the direction changes
- The divergence of the normal field is proportional to the curvature
- The formula

$$
\begin{equation*}
\Psi=-\operatorname{div}\left[\frac{\operatorname{grad}(U)}{\|\operatorname{grad}(U)\|}\right] \tag{6}
\end{equation*}
$$

can be employed to compute the curvature

The curvature describes, how much the direction of a curve changes. This can be accomplished by calculating the divergence of the normal field on the curve. Since the normal field of the curve is rectangular to the curve and $(\partial x, \partial y) \times v_{\text {set }}$ is the trace of the hessian - which sum is independent of the koordinate system - we can simply compute the laplacian at any point in the original koordinate system and optain the cuvature

Real Corners

$\Psi_{x, y}>0$

$\log (-\Psi)$

Skeletons

Skeleton computation depends on three values:

$$
\tilde{\Psi}=\frac{U \cdot \Psi}{\|\operatorname{grad}(U)\|}
$$

- U removes locations at the boundary
- $\|\operatorname{grad}(U)\|$ includes the ridgid regions
- Ψ includes the influence of the ridgid regions

Influence of the terms:

- Since the values of U are small there
- Since the gradient is very low
- Since the value for ridgid regions is highly positive, especially because of the division by the abs grad value

Influence of the terms

$$
\tilde{\Psi}=\frac{U \cdot \Psi}{\|\operatorname{grad}(U)\|}
$$

Real Skeletons

Skeletons computed with $\tilde{\Psi}$ and thresholded with the mean values of the shape.

Classification

This properties can be used to compute features/measures that can be used to classify shapes

Decision trees

Binary decision trees

- represent knowledge about a domain
- can be used to infer properties about unknown objects, e.g. a label for a shape
- are derived by using a trainings set

Each edge represents a set of features, each leaf represents a class.

Training the classifier

- Each sample is represented by a high dimensional feature vector
- Splitting is achieved by projecting data onto a line and
- Applying a threshold to separate the data
- The ideal combination of both - direction w and threshold t-splits the data
- A split is considered good, if the mixture in the subsets is reduced

Results of Classification

 $-4+3+3+3+\pi \rightarrow 2+n$

- ©
 $\pi \cdots \cdots \cdots \cdots \cdots \cdots \cdots+\cdots \rightarrow+M$

Conclusion

- There is a discrete form of the Laplace operator
- It can be used to solve the Poisson Equation on a discrete grid
- This solution is equivalent to a random walker measure
- It can be used to compute interesting properties of a shape
- Those properties can be used to classify shapes using decision trees

Thank you for your attention!

[^0]: ${ }^{1}$ In this example only on \mathbb{R}

