IN2107 - Image Segmentation and Shape Analysis (Seminar)

Prof. Dr. Daniel Cremers Dr. Frank R. Schmidt <u>Dr. Csaba Domokos</u> Matthias Vestner Zorah Lähner

Winter Semester 2016/2017

minCut/maxFlow

Boykov–Kolmogorov algorithm

An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision

minCut/maxFlow

Boykov–Kolmogorov algorithm

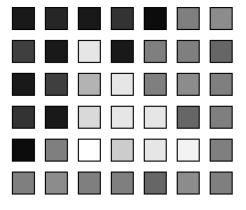
Energy minimization

The labeling problem

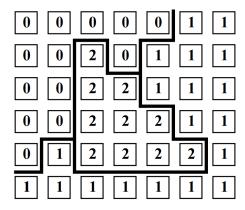
Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

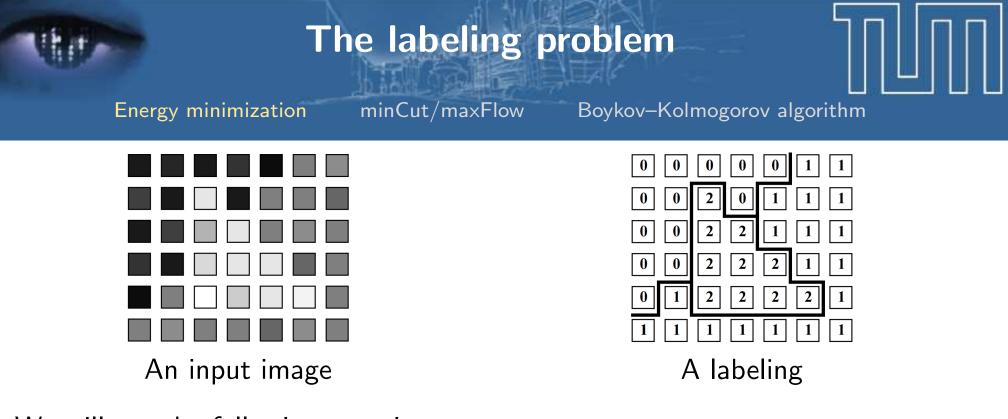


An input image

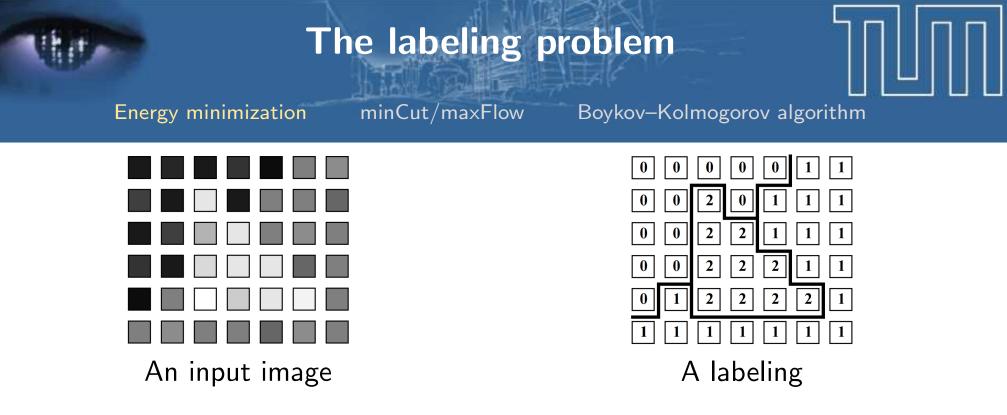


A labeling

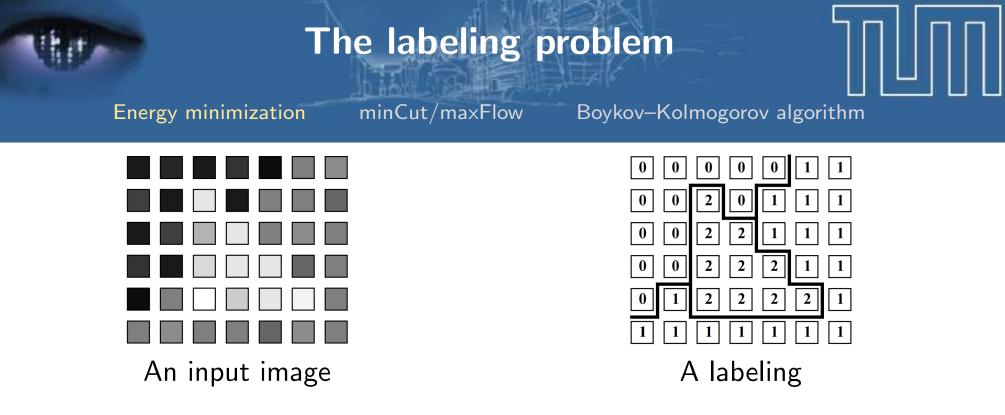
IN2107



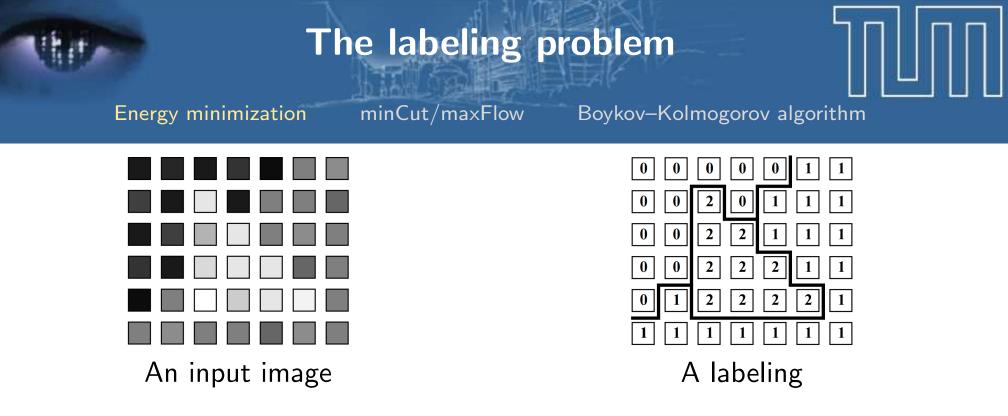
■ \mathcal{V} denotes a set of output variables (e.g., for pixels) and the corresponding random variables are denoted by Y_i for all $i \in \mathcal{V}$



- \mathcal{V} denotes a set of output variables (e.g., for pixels) and the corresponding random variables are denoted by Y_i for all $i \in \mathcal{V}$
- The output domain \mathcal{Y} is given by the product of individual variable domains \mathcal{Y}_i (e.g., a single label set \mathcal{L}), that is $\mathcal{Y} = \times_{i \in \mathcal{V}} \mathcal{Y}_i = \mathcal{L}^{\mathcal{V}}$



- \mathcal{V} denotes a set of output variables (e.g., for pixels) and the corresponding random variables are denoted by Y_i for all $i \in \mathcal{V}$
- The output domain \mathcal{Y} is given by the product of individual variable domains \mathcal{Y}_i (e.g., a single label set \mathcal{L}), that is $\mathcal{Y} = \times_{i \in \mathcal{V}} \mathcal{Y}_i = \mathcal{L}^{\mathcal{V}}$
- The realization $\mathbf{Y} = \mathbf{y}$ means that $Y_i = y_i$ for all $i \in \mathcal{V}$



- \mathcal{V} denotes a set of output variables (e.g., for pixels) and the corresponding random variables are denoted by Y_i for all $i \in \mathcal{V}$
- The output domain \mathcal{Y} is given by the product of individual variable domains \mathcal{Y}_i (e.g., a single label set \mathcal{L}), that is $\mathcal{Y} = \times_{i \in \mathcal{V}} \mathcal{Y}_i = \mathcal{L}^{\mathcal{V}}$
- The realization $\mathbf{Y} = \mathbf{y}$ means that $Y_i = y_i$ for all $i \in \mathcal{V}$

We aim to model the joint probability distribution $p(\mathbf{y})$, and find the *best* labeling \mathbf{y}^*

Markov random field

Energy minimization

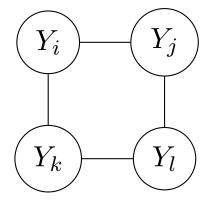
minCut/maxFlow Boykov–Kolmogorov algorithm

Consider an undirected graph $G = (\mathcal{V}, \mathcal{E})$ with the following assumption:

Two nodes (i.e. random variables) are *conditionally independent* whenever they are not connected, that is for any node i in the graph

$$p(Y_i \mid Y_{\mathcal{V} \setminus \{i\}}) = p(Y_i \mid Y_{N(i)}) ,$$

where N(i) is denotes the neighbors of node i in the graph



Markov random field

Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Consider an undirected graph $G = (\mathcal{V}, \mathcal{E})$ with the following assumption:

Two nodes (i.e. random variables) are *conditionally independent* whenever they are not connected, that is for any node i in the graph

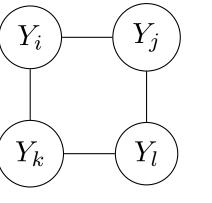
$$p(Y_i \mid Y_{\mathcal{V} \setminus \{i\}}) = p(Y_i \mid Y_{N(i)}) ,$$

where N(i) is denotes the neighbors of node i in the graph

A probability distribution $p(\mathbf{y})$ is called Gibbs distribution if it can be factorized into potential functions $\psi_c(\mathbf{y}_c) > 0$ defined on cliques:

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c)$$
, where $Z = \sum_{\mathbf{y} \in \mathcal{Y}} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c)$,

and C_G denotes the set of all (maximal) cliques in G



Markov random field

Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Consider an undirected graph $G = (\mathcal{V}, \mathcal{E})$ with the following assumption:

Two nodes (i.e. random variables) are *conditionally independent* whenever they are not connected, that is for any node i in the graph

$$p(Y_i \mid Y_{\mathcal{V} \setminus \{i\}}) = p(Y_i \mid Y_{N(i)}) ,$$

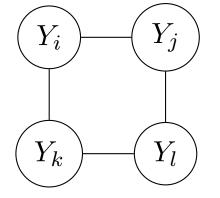
where N(i) is denotes the neighbors of node i in the graph

A probability distribution $p(\mathbf{y})$ is called Gibbs distribution if it can be factorized into potential functions $\psi_c(\mathbf{y}_c) > 0$ defined on cliques:

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c)$$
, where $Z = \sum_{\mathbf{y} \in \mathcal{Y}} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c)$,

and C_G denotes the set of all (maximal) cliques in G

The *Hammersley-Clifford theorem* tells us that the above two definitions are equivalent.



We define an *energy function* $E_c : \mathcal{Y}_c \to \mathbb{R}$ for each clique $c \in \mathcal{C}_G$:

 $E_c(\mathbf{y}_c) = -\log(\psi_c(\mathbf{y}_c)) \quad \Leftrightarrow \quad \psi_c(\mathbf{y}_c) = \exp(-E_c(\mathbf{y}_c)) .$

$$E_c(\mathbf{y}_c) = -\log(\psi_c(\mathbf{y}_c)) \quad \Leftrightarrow \quad \psi_c(\mathbf{y}_c) = \exp(-E_c(\mathbf{y}_c)) .$$

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c)$$

$$E_c(\mathbf{y}_c) = -\log(\psi_c(\mathbf{y}_c)) \quad \Leftrightarrow \quad \psi_c(\mathbf{y}_c) = \exp(-E_c(\mathbf{y}_c)) .$$

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c)$$

$$E_c(\mathbf{y}_c) = -\log(\psi_c(\mathbf{y}_c)) \quad \Leftrightarrow \quad \psi_c(\mathbf{y}_c) = \exp(-E_c(\mathbf{y}_c)) .$$

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c) = \frac{1}{Z} \exp\left(-\sum_{c \in \mathcal{C}_G} E_c(\mathbf{y}_c)\right)$$

$$E_c(\mathbf{y}_c) = -\log(\psi_c(\mathbf{y}_c)) \quad \Leftrightarrow \quad \psi_c(\mathbf{y}_c) = \exp(-E_c(\mathbf{y}_c)) .$$

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c) = \frac{1}{Z} \exp(-\sum_{c \in \mathcal{C}_G} E_c(\mathbf{y}_c))$$
$$= \frac{1}{Z} \exp(-E(\mathbf{y}))$$

We define an *energy function* $E_c : \mathcal{Y}_c \to \mathbb{R}$ for each clique $c \in \mathcal{C}_G$:

$$E_c(\mathbf{y}_c) = -\log(\psi_c(\mathbf{y}_c)) \quad \Leftrightarrow \quad \psi_c(\mathbf{y}_c) = \exp(-E_c(\mathbf{y}_c)) .$$

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{c \in \mathcal{C}_G} \psi_c(\mathbf{y}_c) = \frac{1}{Z} \exp(-\sum_{c \in \mathcal{C}_G} E_c(\mathbf{y}_c))$$
$$= \frac{1}{Z} \exp(-E(\mathbf{y}))$$

Hence, $p(\mathbf{y})$ is completely determined by $E(\mathbf{y})$

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

$$\underset{\mathbf{y}\in\mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y}) = \underset{\mathbf{y}\in\mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \exp(-E(\mathbf{y}))$$

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

$$\underset{\mathbf{y}\in\mathcal{Y}}{\operatorname{argmax}} p(\mathbf{y}) = \underset{\mathbf{y}\in\mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \exp(-E(\mathbf{y}))$$
$$= \underset{\mathbf{y}\in\mathcal{Y}}{\operatorname{argmax}} \exp(-E(\mathbf{y}))$$

Boykov–Kolmogorov algorithm

Energy minimization

minCut/maxFlow

Our goal is to solve $\mathbf{y}^* \in \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y})$

$$\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{y}) = \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \frac{1}{Z} \exp(-E(\mathbf{y}))$$
$$= \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}))$$
$$= \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} -E(\mathbf{y})$$

IN2107

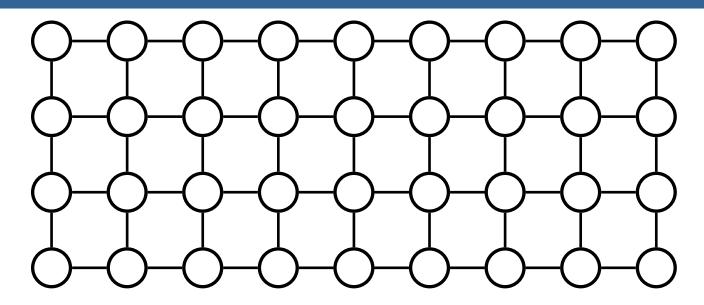
Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

$$\operatorname{argmax}_{\mathbf{y}\in\mathcal{Y}} p(\mathbf{y}) = \operatorname{argmax}_{\mathbf{y}\in\mathcal{Y}} \frac{1}{Z} \exp(-E(\mathbf{y}))$$
$$= \operatorname{argmax}_{\mathbf{y}\in\mathcal{Y}} \exp(-E(\mathbf{y}))$$
$$= \operatorname{argmax}_{\mathbf{y}\in\mathcal{Y}} -E(\mathbf{y})$$
$$= \operatorname{argmin}_{\mathbf{y}\in\mathcal{Y}} E(\mathbf{y}) .$$

minCut/maxFlow

Boykov–Kolmogorov algorithm



In practice, one typically models the energy function directly

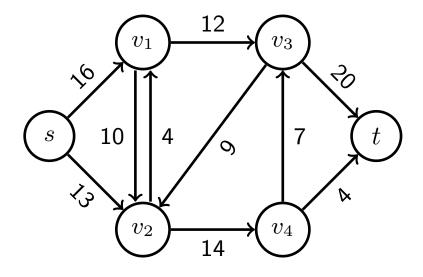
$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j \in \mathcal{E})} E_{ij}(y_i, y_j)$$

minCut/maxFlow

Boykov–Kolmogorov algorithm

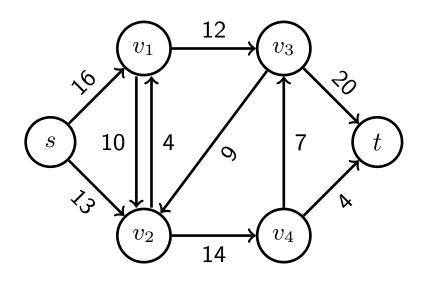
minCut/maxFlow

Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$



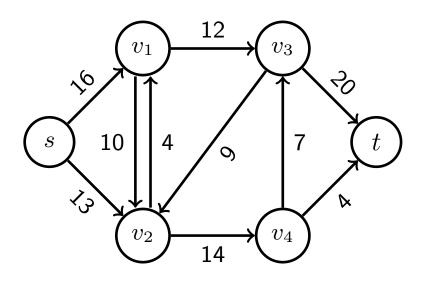
Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

• $\mathcal{V} = \{1, \ldots, n\}$ is a finite set of nodes,



Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

- $\mathcal{V} = \{1, \dots, n\}$ is a finite set of nodes,
- $\blacksquare \quad \mathcal{E} \subseteq \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid i \neq j\} \text{ is the set of edges,}$

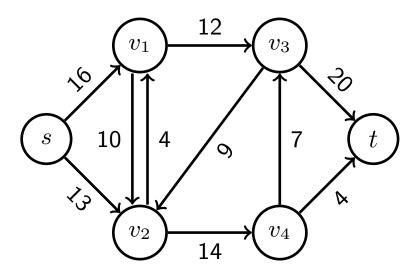


Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

- $\mathcal{V} = \{1, \dots, n\}$ is a finite set of nodes,
- $\blacksquare \quad \mathcal{E} \subseteq \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid i \neq j\} \text{ is the set of edges,}$
- $c: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ is a weight function. (For any $(i, j) \notin \mathcal{E}$, c(i, j) = 0.)



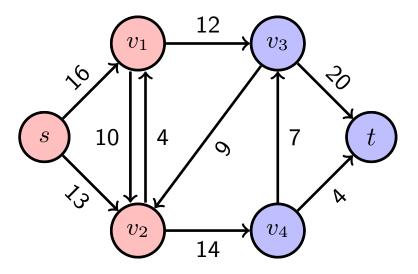
Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

- $\mathcal{V} = \{1, \dots, n\}$ is a finite set of nodes,
- $\blacksquare \quad \mathcal{E} \subseteq \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid i \neq j\} \text{ is the set of edges,}$
- $c: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ is a weight function. (For any $(i, j) \notin \mathcal{E}$, c(i, j) = 0.)

A cut (S, T) of G is a disjoint partition of V into S and $T = V \setminus S$.



Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

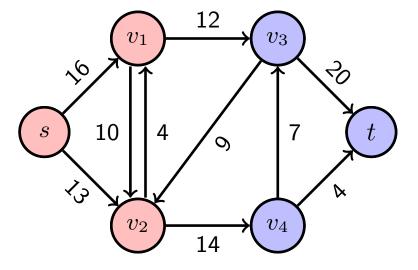
Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

- $\mathcal{V} = \{1, \dots, n\}$ is a finite set of nodes,
- $\blacksquare \quad \mathcal{E} \subseteq \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid i \neq j\} \text{ is the set of edges,}$
- $c: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ is a weight function. (For any $(i, j) \notin \mathcal{E}$, c(i, j) = 0.)

A cut (S, T) of G is a *disjoint* partition of V into S and $T = V \setminus S$.

The *capacity* of the cut $(\mathcal{S}, \mathcal{T})$ is defined as

$$\operatorname{cut}(\mathcal{S}, \mathcal{T}) = \sum_{(i,j) \in \mathcal{S} \times \mathcal{T}} c(i,j) \;.$$



Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

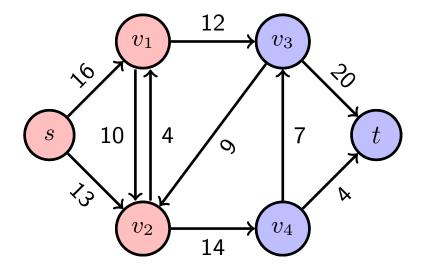
- $\mathcal{V} = \{1, \ldots, n\}$ is a finite set of nodes,
- $\blacksquare \quad \mathcal{E} \subseteq \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid i \neq j\} \text{ is the set of edges,}$
- $\bullet c: \mathcal{V} \times \mathcal{V} \to \mathbb{R} \text{ is a weight function. (For any } (i,j) \notin \mathcal{E}, c(i,j) = 0.)$

A cut (S, T) of G is a disjoint partition of V into S and $T = V \setminus S$.

The *capacity* of the cut $(\mathcal{S}, \mathcal{T})$ is defined as

$$\operatorname{cut}(\mathcal{S}, \mathcal{T}) = \sum_{(i,j) \in \mathcal{S} \times \mathcal{T}} c(i,j) \;.$$

Assume distinct nodes $s, t \in \mathcal{V}$, a cut $(\mathcal{S}, \mathcal{T})$ is called s - t cut if $s \in \mathcal{S}$ and $t \in \mathcal{T}$.



Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

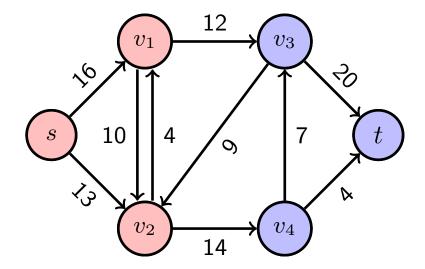
- $\mathcal{V} = \{1, \dots, n\}$ is a finite set of nodes,
- $\blacksquare \quad \mathcal{E} \subseteq \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid i \neq j\} \text{ is the set of edges,}$
- $c: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ is a weight function. (For any $(i, j) \notin \mathcal{E}$, c(i, j) = 0.)

A cut (S, T) of G is a disjoint partition of V into S and $T = V \setminus S$.

The *capacity* of the cut $(\mathcal{S}, \mathcal{T})$ is defined as

$$\mathsf{cut}(\mathcal{S},\mathcal{T}) = \sum_{(i,j)\in\mathcal{S}\times\mathcal{T}} c(i,j) \; .$$

Assume distinct nodes $s, t \in \mathcal{V}$, a cut $(\mathcal{S}, \mathcal{T})$ is called s - t cut if $s \in \mathcal{S}$ and $t \in \mathcal{T}$.



The minimum s - t cut problem is to find an s - t cut with the lowest cost.

Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Assume a weighted directed graph $G = (\mathcal{V}, \mathcal{E}, c)$

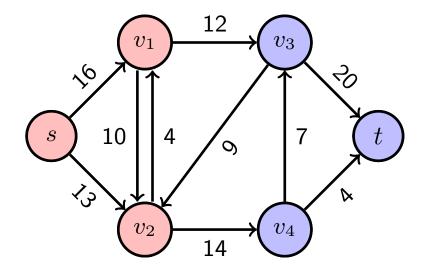
- $\mathcal{V} = \{1, \ldots, n\}$ is a finite set of nodes,
- $\blacksquare \quad \mathcal{E} \subseteq \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid i \neq j\} \text{ is the set of edges,}$
- $c: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ is a weight function. (For any $(i, j) \notin \mathcal{E}$, c(i, j) = 0.)

A *cut* (S, T) of G is a *disjoint* partition of V into S and $T = V \setminus S$.

The *capacity* of the cut $(\mathcal{S}, \mathcal{T})$ is defined as

$$\operatorname{cut}(\mathcal{S},\mathcal{T}) = \sum_{(i,j)\in\mathcal{S}\times\mathcal{T}} c(i,j)$$
 .

Assume distinct nodes $s, t \in \mathcal{V}$, a cut $(\mathcal{S}, \mathcal{T})$ is called s - t cut if $s \in \mathcal{S}$ and $t \in \mathcal{T}$.



The minimum s - t cut problem is to find an s - t cut with the lowest cost.

<u>Example</u>: $\operatorname{cut}(\mathcal{S}, \mathcal{T}) = c(v_1, v_3) + c(v_2, v_4) = 12 + 14 = 26.$

Flow network and flow

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

Let $G = (\mathcal{V}, \mathcal{E}, c)$ be a *directed weighted graph* with **non-negative** edge weights.

Let $G = (\mathcal{V}, \mathcal{E}, c)$ be a *directed weighted graph* with **non-negative** edge weights. Given two distinct nodes, a **source** s and a **sink** t, we call $(\mathcal{V}, \mathcal{E}, c, s, t)$ a *flow network*

Let $G = (\mathcal{V}, \mathcal{E}, c)$ be a *directed weighted graph* with **non-negative** edge weights. Given two distinct nodes, a **source** s and a **sink** t, we call $(\mathcal{V}, \mathcal{E}, c, s, t)$ a *flow network*

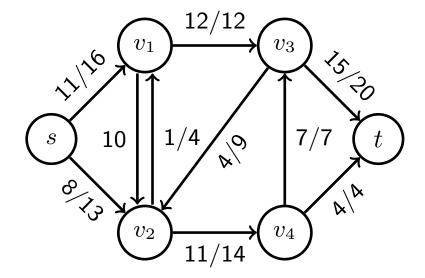
Let $(\mathcal{V}, \mathcal{E}, c, s, t)$ be a flow network. A function $f : \mathcal{E} \to \mathbb{R}^+$ is called a *flow* if it satisfies the following two properties:

Let $G = (\mathcal{V}, \mathcal{E}, c)$ be a *directed weighted graph* with **non-negative** edge weights. Given two distinct nodes, a **source** s and a **sink** t, we call $(\mathcal{V}, \mathcal{E}, c, s, t)$ a *flow network*

Let $(\mathcal{V}, \mathcal{E}, c, s, t)$ be a flow network. A function $f : \mathcal{E} \to \mathbb{R}^+$ is called a *flow* if it satisfies the following two properties:

1. $f(i,j) \leq c(i,j)$ for all $(i,j) \in \mathcal{E}$. 2. For all $i \in \mathcal{V} \setminus \{s,t\}$

$$\sum_{(i,j)\in\mathcal{E}} f(i,j) = \sum_{(j,i)\in\mathcal{E}} f(j,i) \ .$$



The edges are labeled by f(i,j)/c(i,j).

Only positive f(i, j) are shown.

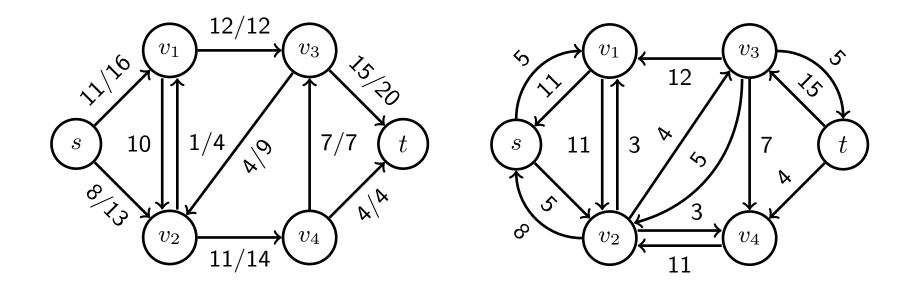
The *value* of a flow f is defined as

$$|f| \stackrel{\Delta}{=} \sum_{(s,i)\in\mathcal{E}} f(s,i) = -\sum_{(i,t)\in\mathcal{E}} f(i,t)$$

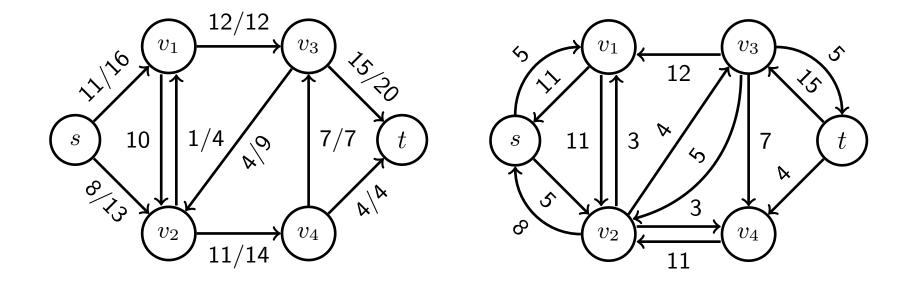
The *value* of a flow f is defined as

$$|f| \stackrel{\Delta}{=} \sum_{(s,i)\in\mathcal{E}} f(s,i) = -\sum_{(i,t)\in\mathcal{E}} f(i,t) \; .$$

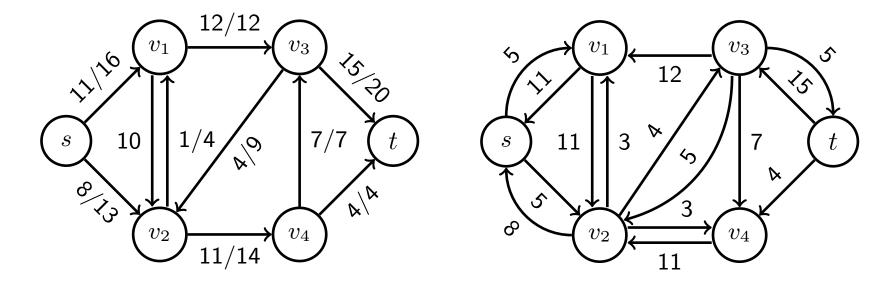
The maximum-flow problem is to find a flow f with the highest cost for a given flow network G



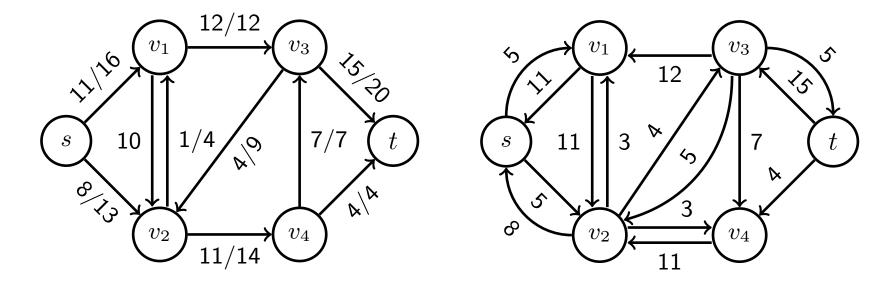
$$c_f(i,j) = c(i,j) - f(i,j)$$



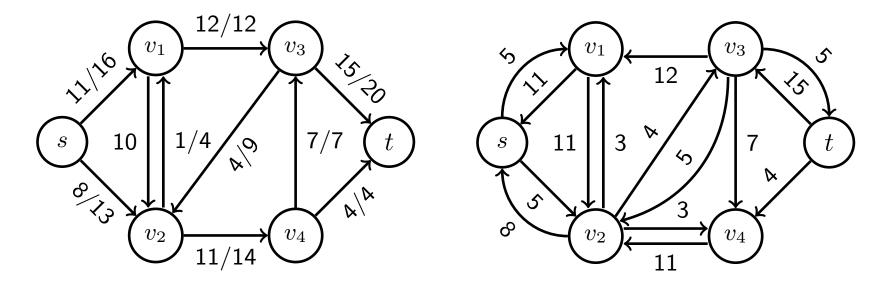
$$c_f(i,j) = c(i,j) - f(i,j)$$
$$\mathcal{E}_f = \{(i,j) \in \mathcal{V} \times \mathcal{V} : c_f(i,j) > 0\}$$



$$c_f(i,j) = c(i,j) - f(i,j)$$
$$\mathcal{E}_f = \{(i,j) \in \mathcal{V} \times \mathcal{V} : c_f(i,j) > 0\}$$



$$c_f(i,j) = c(i,j) - f(i,j)$$
$$\mathcal{E}_f = \{(i,j) \in \mathcal{V} \times \mathcal{V} : c_f(i,j) > 0\}$$



A path p from s to t in G_f is called an *augmenting path*.

- 1) f is a maximal flow in G
- 2) The residual graph G_f contains no augmenting paths
- 3) $|f| = \operatorname{cut}(\mathcal{S}, \mathcal{T})$ for some s t cut of G

- 1) f is a maximal flow in G
- 2) The residual graph G_f contains no augmenting paths
- 3) $|f| = \operatorname{cut}(\mathcal{S}, \mathcal{T})$ for some s t cut of G

In general, for **any** flow f in G the following holds:

$$|f| = \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} f(i, j)$$

- 1) f is a maximal flow in G
- 2) The residual graph G_f contains no augmenting paths
- 3) $|f| = \operatorname{cut}(\mathcal{S}, \mathcal{T})$ for some s t cut of G

In general, for **any** flow f in G the following holds:

$$|f| = \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} f(i, j) \leqslant \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} c(i, j)$$

- 1) f is a maximal flow in G
- 2) The residual graph G_f contains no augmenting paths
- 3) $|f| = \operatorname{cut}(\mathcal{S}, \mathcal{T})$ for some s t cut of G

In general, for **any** flow f in G the following holds:

$$|f| = \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} f(i, j) \leqslant \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} c(i, j) = \mathsf{cut}(\mathcal{S}, \mathcal{T})$$

- 1) f is a maximal flow in G
- 2) The residual graph G_f contains no augmenting paths
- 3) $|f| = \operatorname{cut}(\mathcal{S}, \mathcal{T})$ for some s t cut of G

In general, for **any** flow f in G the following holds:

$$|f| = \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} f(i, j) \leqslant \sum_{i \in \mathcal{S}} \sum_{j \in \mathcal{T}} c(i, j) = \mathsf{cut}(\mathcal{S}, \mathcal{T})$$

Hence $|f| = \operatorname{cut}(\mathcal{S}, \mathcal{T})$ is maximal (equivalently $\operatorname{cut}(\mathcal{S}, \mathcal{T})$ is minimal)

Energy minimization

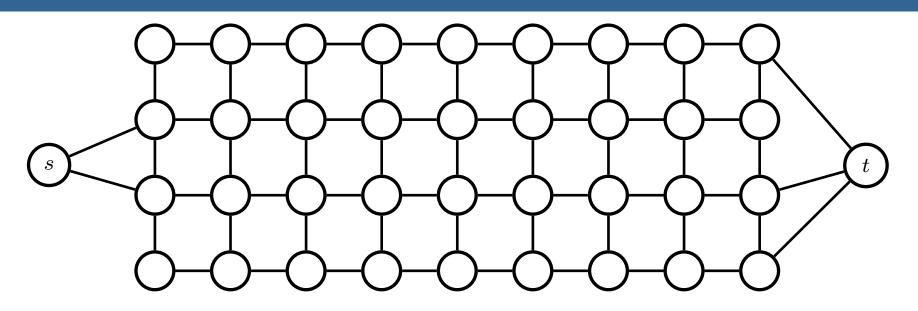
minCut/maxFlow

Boykov–Kolmogorov algorithm

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

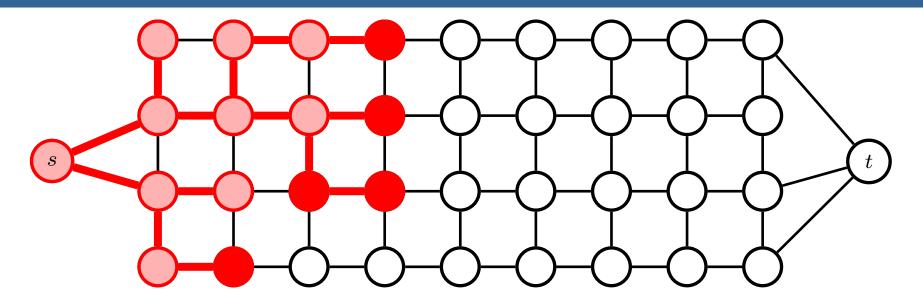


Main idea: Never start building an *augmenting path* from scratch

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

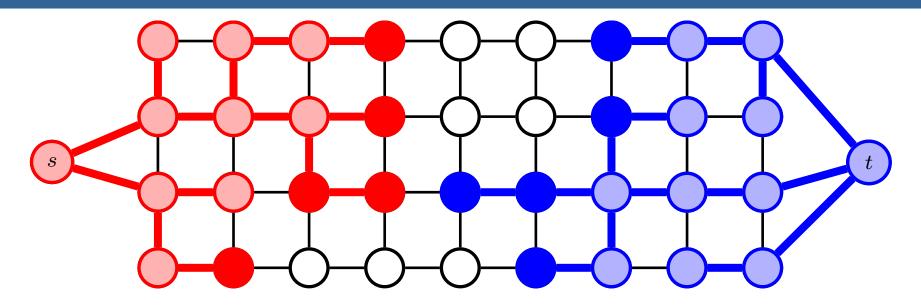


Main idea: Never start building an *augmenting path* from scratch

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

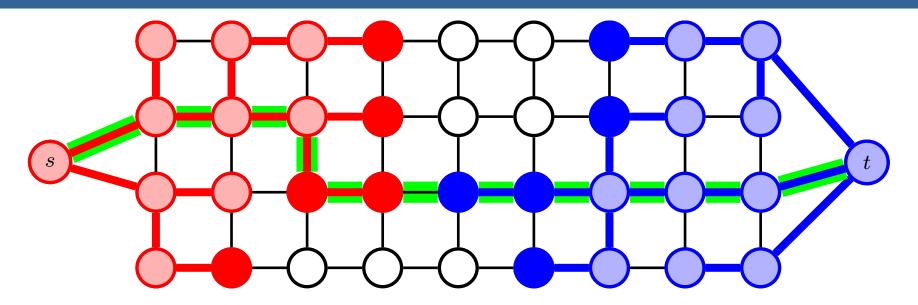


Main idea: Never start building an *augmenting path* from scratch
Two non-overlapping search trees S and T with roots at the terminals
The edges of the trees are *non-saturated*, i.e. f(i, j) < c(i, j)

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm

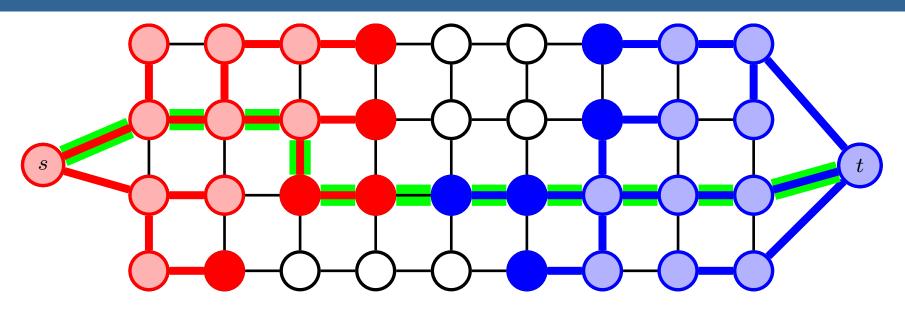


Main idea: Never start building an *augmenting path* from scratch

- Two non-overlapping search trees S and T with roots at the terminals
- The edges of the trees are *non-saturated*, i.e. f(i,j) < c(i,j)
- Active nodes:
- Passive nodes: O
- Free nodes:

Energy minimization

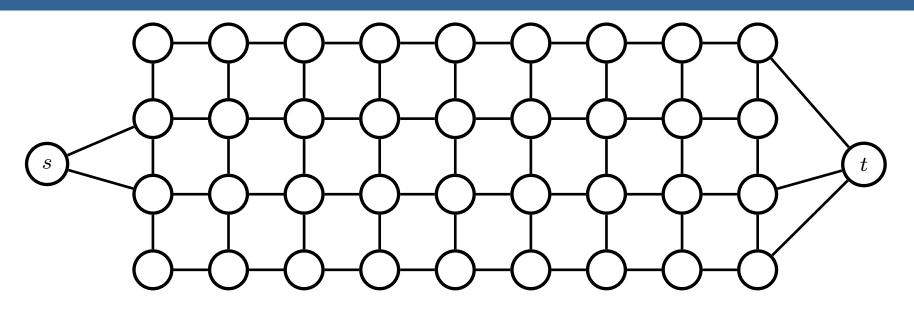
minCut/maxFlow



- 1: while true do
- 2: grow S or T to find an augmenting path P from s to t
- 3: if $P = \emptyset$ then
- 4: terminate
- 5: **end if**
- 6: **augment** on P
- 7: **adopt** orphans
- 8: end while

Energy minimization

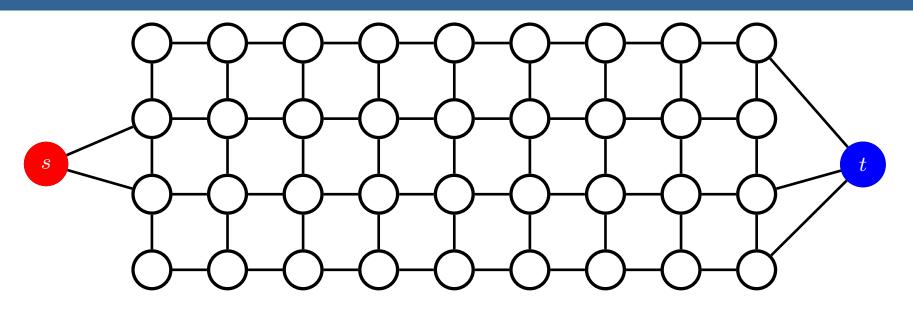
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

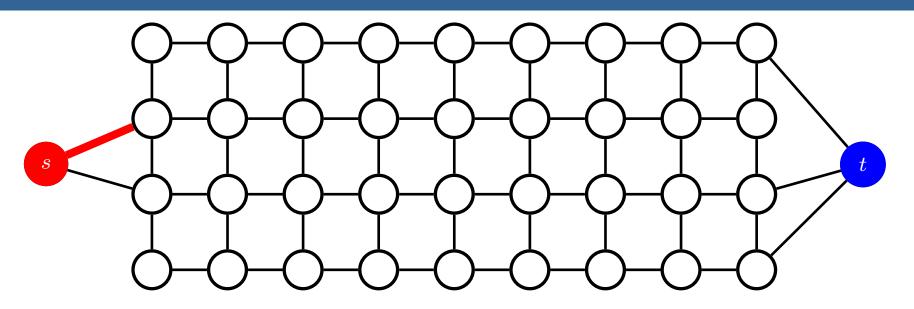
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

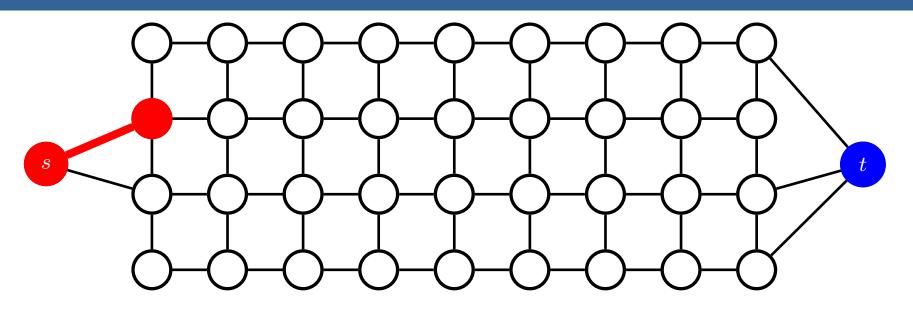
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

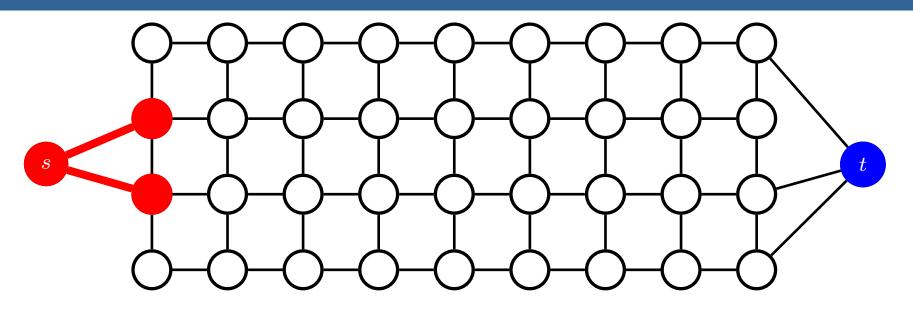
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

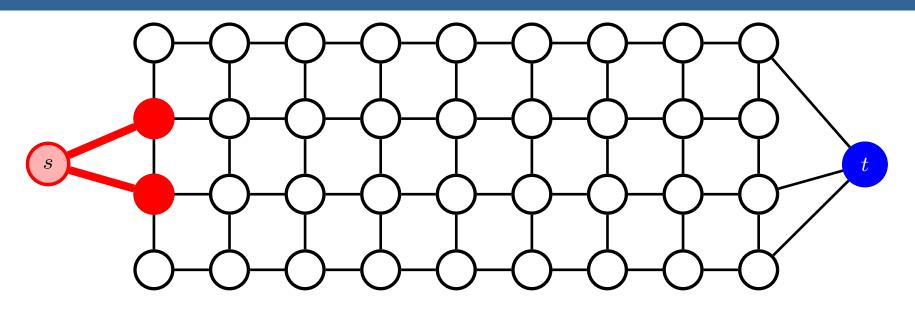
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

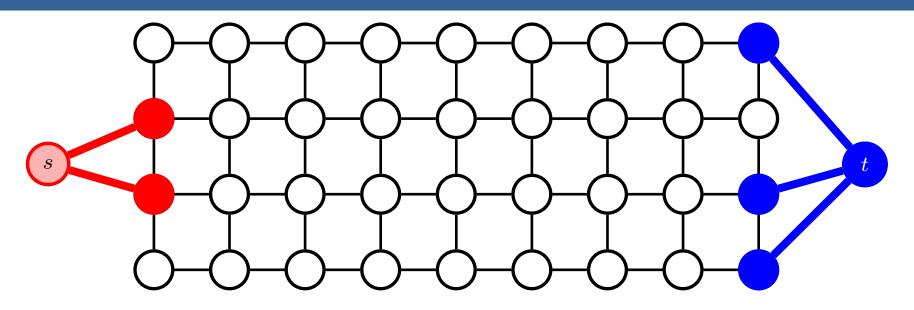
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

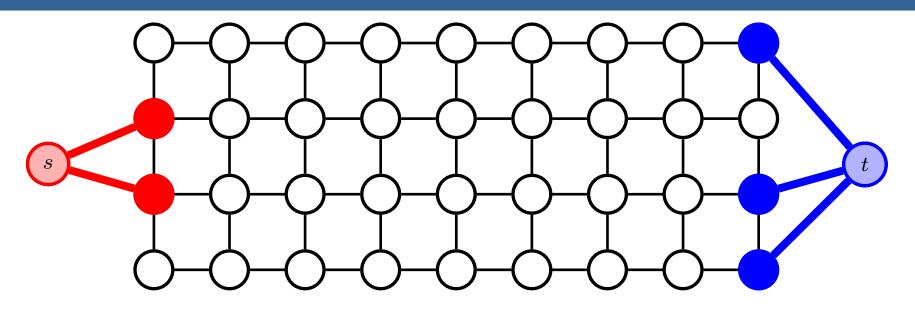
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

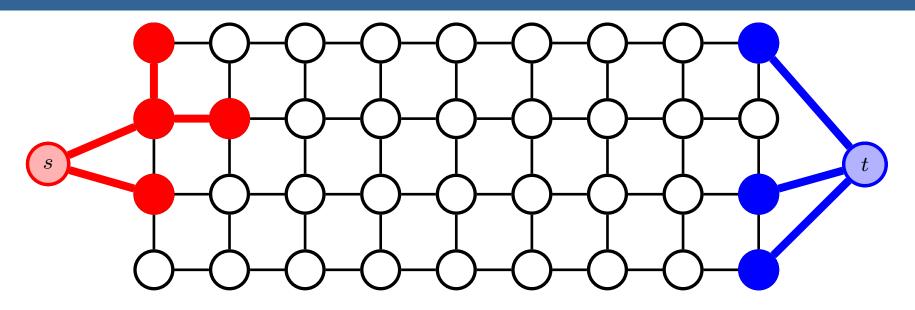
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

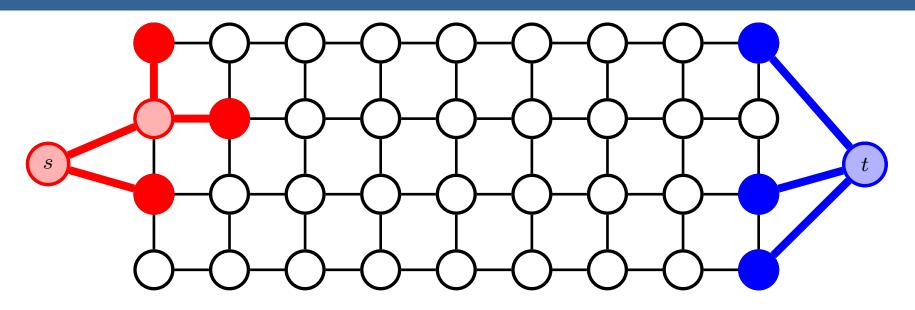
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

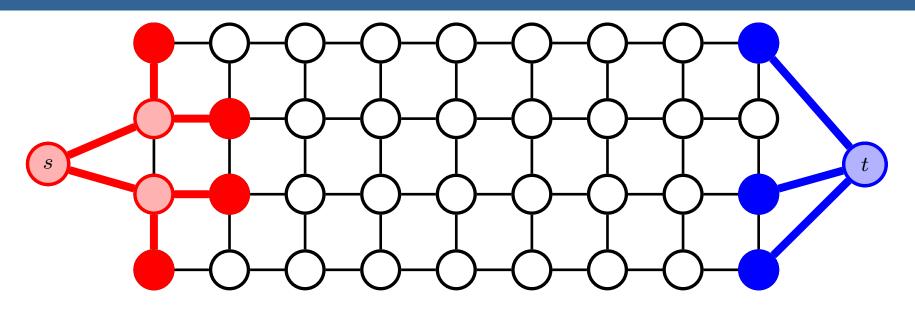
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become active members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

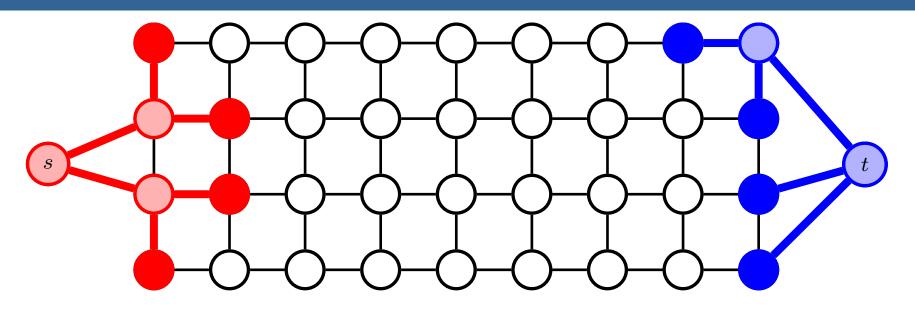
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

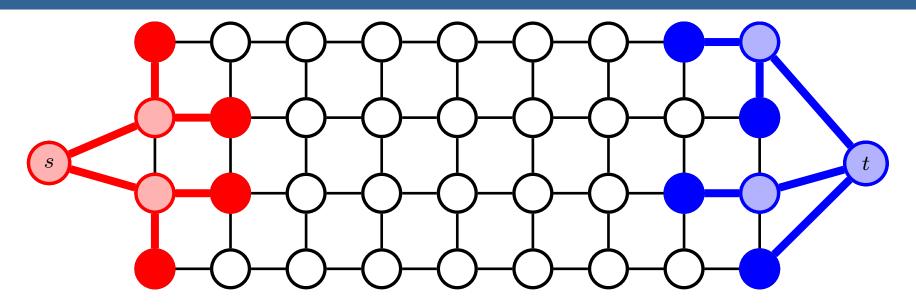
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

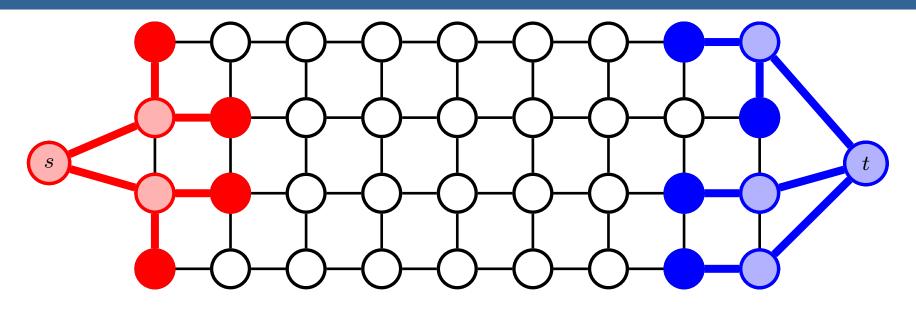
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

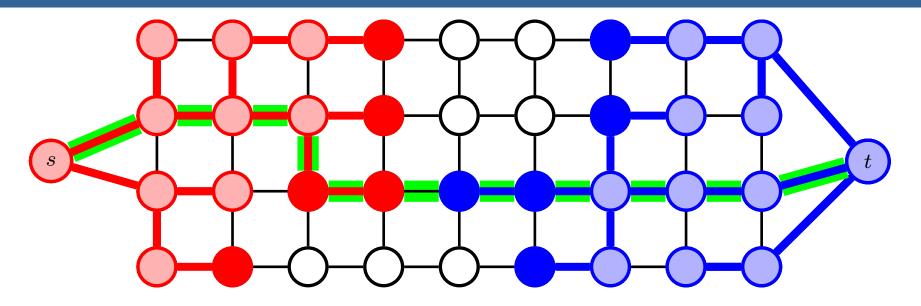
minCut/maxFlow



- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become *active* members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Energy minimization

minCut/maxFlow

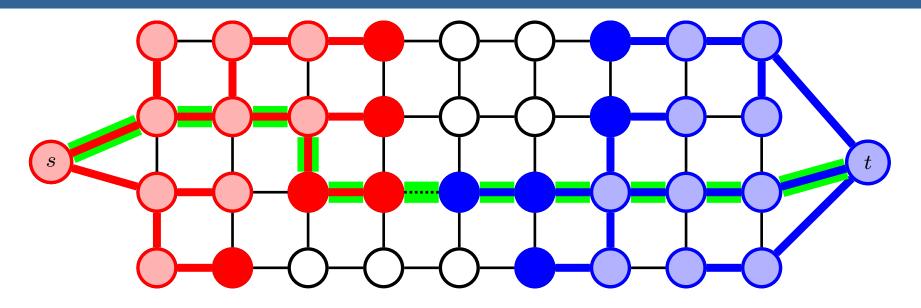


- The active nodes explore adjacent edges and acquire new children from a set of free nodes
- The newly acquired nodes become active members of the corresponding search trees
- The active node becomes passive, when all of its neighbors are explored
- If an active node encounters a neighboring node belonging to the opposite tree, the growth stage terminates

Augmentation stage

Energy minimization

minCut/maxFlow



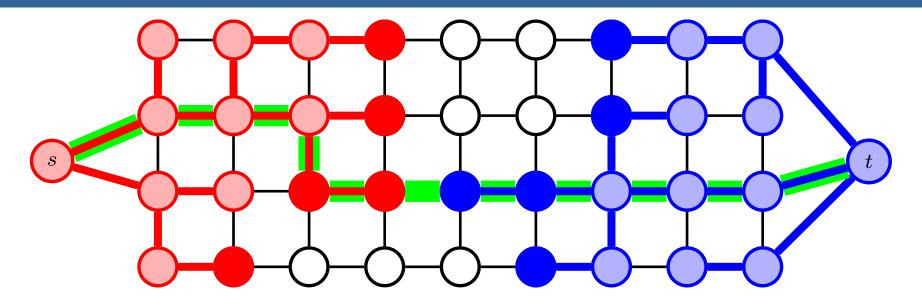
- Find the bottleneck capacity Δ on P
- Update the residual graph by pushing flow Δ through P

Augmentation stage

Energy minimization

minCut/maxFlow

Boykov–Kolmogorov algorithm



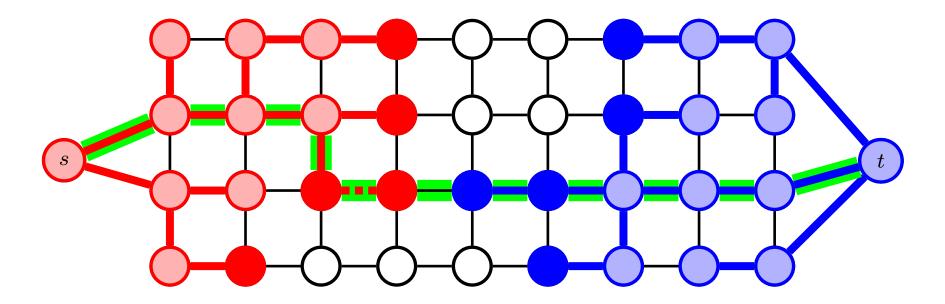
- Find the bottleneck capacity Δ on P
- Update the residual graph by pushing flow Δ through P

Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Orphan (\bigcirc): the nodes such that the edges linking them to their parents are no longer valid (i.e. they are saturated)

By removing them the search trees S and T may be split into *forests*



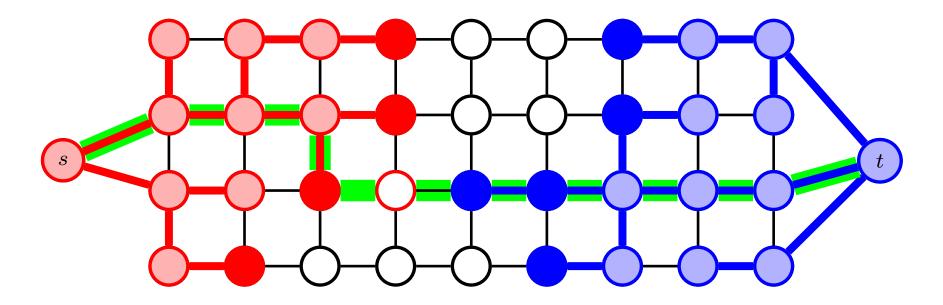
We are trying to find a *new valid parent* for p among its neighbors, such that a new parent should belong to the same set, S or T, as the *orphan*

Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Orphan (\bigcirc): the nodes such that the edges linking them to their parents are no longer valid (i.e. they are saturated)

By removing them the search trees S and T may be split into *forests*



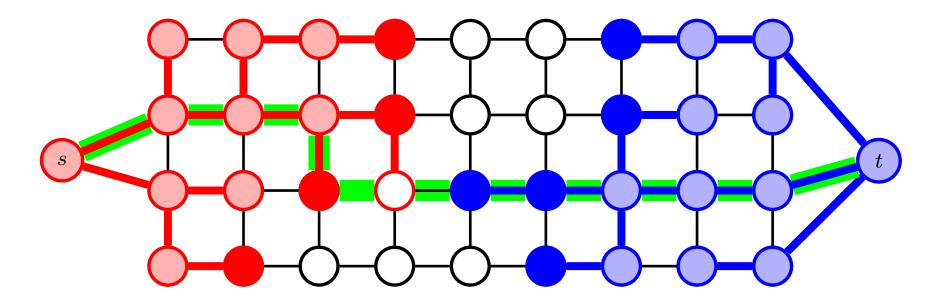
We are trying to find a *new valid parent* for p among its neighbors, such that a new parent should belong to the same set, S or T, as the *orphan*

Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

Orphan (\bigcirc): the nodes such that the edges linking them to their parents are no longer valid (i.e. they are saturated)

By removing them the search trees S and T may be split into *forests*

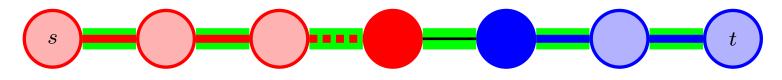


We are trying to find a *new valid parent* for p among its neighbors, such that a new parent should belong to the same set, S or T, as the *orphan*

Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

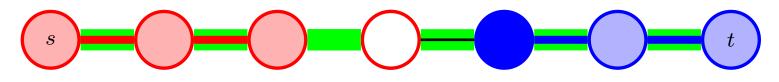
If an orphan p does not find a valid parent then it becomes a *free node*



Energy minimization

minCut/maxFlow Boykov–Kolmogorov algorithm

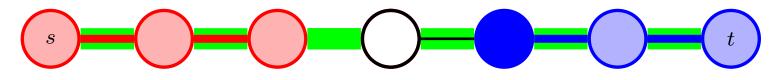
If an orphan p does not find a valid parent then it becomes a *free node*

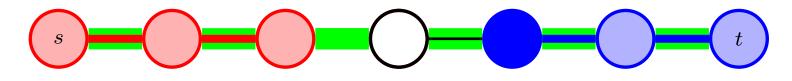


Energy minimization

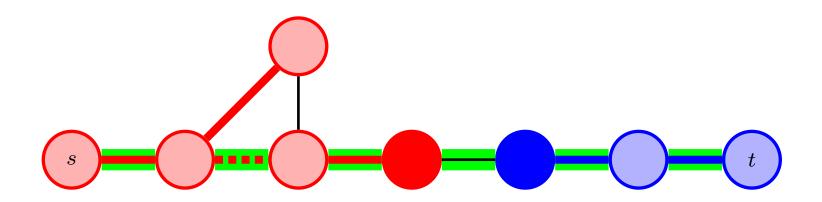
minCut/maxFlow Boykov–Kolmogorov algorithm

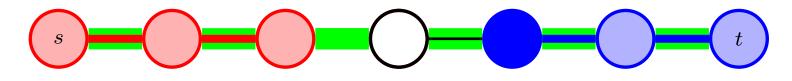
If an orphan p does not find a valid parent then it becomes a *free node*



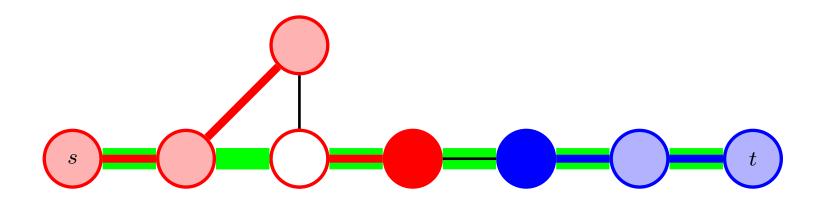


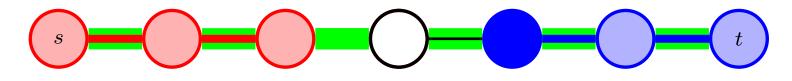
- if tree c(q, p) > 0, add q to the *active set*
- if parent(q) = p, add q to the set of *orphans* and set $parent(q) = \emptyset$



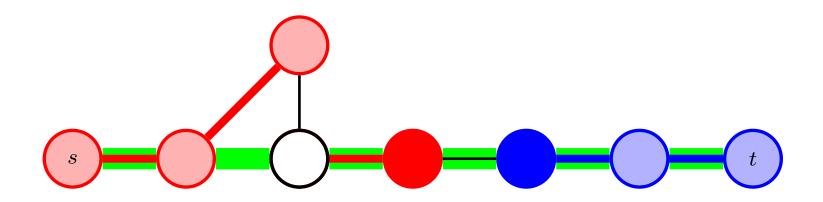


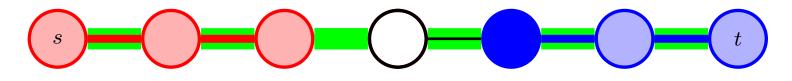
- if tree c(q, p) > 0, add q to the *active set*
- if parent(q) = p, add q to the set of *orphans* and set $parent(q) = \emptyset$



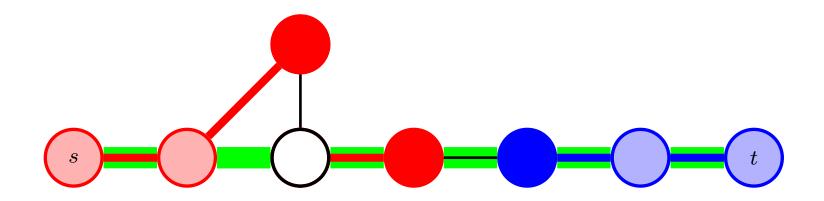


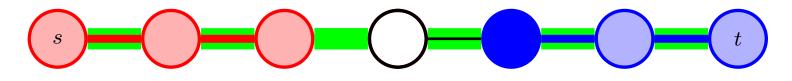
- if tree c(q, p) > 0, add q to the *active set*
- if parent(q) = p, add q to the set of *orphans* and set $parent(q) = \emptyset$



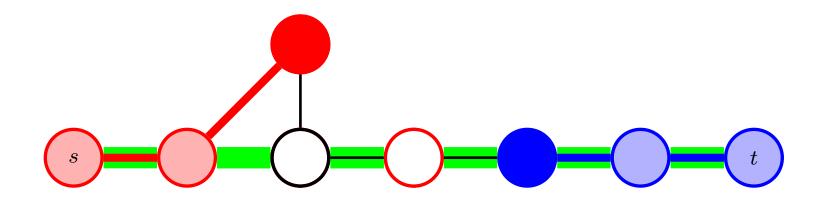


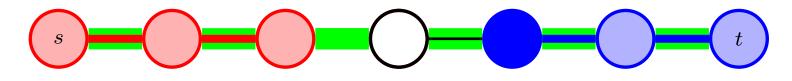
- if tree c(q, p) > 0, add q to the *active set*
- if parent(q) = p, add q to the set of *orphans* and set $parent(q) = \emptyset$



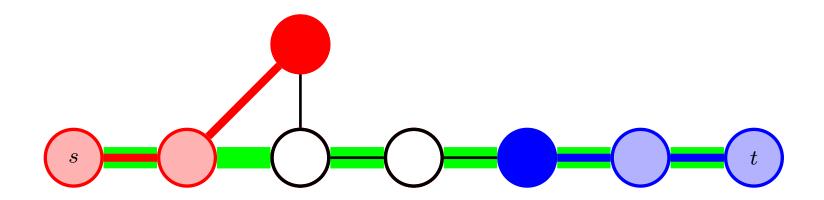


- if tree c(q, p) > 0, add q to the *active set*
- if parent(q) = p, add q to the set of *orphans* and set $parent(q) = \emptyset$





- if tree c(q, p) > 0, add q to the *active set*
- if parent(q) = p, add q to the set of *orphans* and set $parent(q) = \emptyset$



- Boykov-Kolmogorov algorithm is an *augmented path-based method* with worst case complexity $\mathcal{O}(|\mathcal{E}| \cdot |\mathcal{V}|^2 \cdot |C|)$, where |C| is the value of the minimum cut
- This complexity is worse than complexities of the standard algorithm, however, this algorithm significantly ($\sim 2-10 \times$) outperforms standard algorithms on typical problem instances in vision

- Boykov-Kolmogorov algorithm is an *augmented path-based method* with worst case complexity $\mathcal{O}(|\mathcal{E}| \cdot |\mathcal{V}|^2 \cdot |C|)$, where |C| is the value of the minimum cut
- This complexity is worse than complexities of the standard algorithm, however, this algorithm significantly ($\sim 2-10 \times$) outperforms standard algorithms on typical problem instances in vision
- In many computer vision problems we aim to minimize an em energy function

$$E(\mathbf{y}) = \sum_{i \in \mathcal{V}} E_i(y_i) + \sum_{(i,j \in \mathcal{E})} E_{ij}(y_i, y_j)$$

As we will see, this is often achieved by solving the *maxFlow problem*