Seminar for Image Segmentation and Shape Analysis (IN2107)

Wintersemester 2016/2017

What energy functions can be minimized via graph cuts?

Name	$:$ Jude Ng
Date	$: 26.10 .2016$

1. Motivation

- Many vision problems can be expressed in terms of energy minimization
- The goal is to find a labeling $f: P \rightarrow L$
- Example: foreground extraction

Original image and the extracted foreground *

A standard form of an energy function

$$
\begin{aligned}
E(f) & =E_{\text {data }}+E_{\text {smoothness }} \\
E_{\text {smoothness }}(f) & =\sum_{\{p, q\} \in N} V_{p, q}\left(f_{p}, f_{q}\right) \\
E_{\text {data }}(f) & =\sum_{p \in P} D_{p}\left(f_{p}\right)
\end{aligned}
$$

- $\quad E$ is non-convex with a high-dimensional space and is difficult to minimize
- Usually solved with simulated annealing, which is slow in practice
* Images from: S. Denman, C. Fookes and S. Sridharan, "Improved Simultaneous Computation of Motion Detection and Optical Flow for Object Tracking", DICTA '09

1. Motivation

- A recent approach to minimize E based on graph cuts
- Basic technique: construct a specialized graph to represent E

Graph representability

$\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{\mathcal { E }})$ with terminals \boldsymbol{s} and \boldsymbol{t}
and a subset $\boldsymbol{V}_{\boldsymbol{o}}=\left\{\boldsymbol{v}_{\mathbf{1}}, \ldots, \boldsymbol{v}_{\boldsymbol{n}}\right\} \subset \boldsymbol{V}-\{\boldsymbol{s}, \boldsymbol{t}\}$
A cut \boldsymbol{C} partitions the $\boldsymbol{V}_{\boldsymbol{o}}$ into two sets \boldsymbol{S} and \boldsymbol{T} where $\boldsymbol{v}_{\boldsymbol{i}} \in \boldsymbol{S}$ if $\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{0}$ and $\boldsymbol{v}_{\boldsymbol{i}} \in \boldsymbol{T}$ if $\boldsymbol{x}_{\boldsymbol{i}}=\mathbf{1}$
$\boldsymbol{E}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right)$ is equal to the minimum s-t cut among all cuts \boldsymbol{C}

- The minimum cut on the graph minimizes E
- Minimum cut can be computed efficiently with the Ford-Fulkerson max-flow algorithm
- Problem: Graph construction is complex
- Is there a class of E that can be minimized via graph cuts?

2. The class \mathcal{F}^{2}

- Functions that can be written as a sum of functions of up to two variables

$$
E\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} E^{i}\left(x_{i}\right)+\sum_{i<j} E^{i, j}\left(x_{i}, x_{j}\right)
$$

- E is graph-representable if and only if each term $E^{i, j}$ satisfies the regularity condition

$$
E^{i, j}(\mathbf{0}, \mathbf{0})+E^{i, j}(\mathbf{1}, \mathbf{1}) \leq E^{i, j}(\mathbf{0}, \mathbf{1})+E^{i, j}(\mathbf{1}, \mathbf{0})
$$

- Regularity is analogous to submodular functions
- Non-regular functions are NP-hard to minimize

2. The class \mathcal{F}^{2}

- A term E^{i} depending on one variable x_{i}
- Case 1: $E^{i}(0)<E^{i}(1)$

\square
- Case 2: $E^{i}(1)<E^{i}(0)$

s

2. The class \mathcal{F}^{2}

- A term $E^{i, j}$ depending on two variables x_{i} and x_{j} can be rewritten as follows:

$$
E^{i, j}=\begin{array}{|l|l|}
\hline E^{i, j}(\mathbf{0}, \mathbf{0}) & E^{i, j}(\mathbf{0}, \mathbf{1}) \\
\hline E^{i, j}(\mathbf{1}, \mathbf{0}) & E^{i, j}(\mathbf{1}, \mathbf{1}) \\
\hline
\end{array}
$$

10π

2. The class \mathcal{F}^{2}

- Expansion of $E^{i, j}$

A	B			
C	D	$=A+$	0	$B-A$
:---:	:---:			
$C-A$	$D-A$			

2. The class \mathcal{F}^{2}

- Expansion of $E^{i, j}$

0	$\boldsymbol{B}-\boldsymbol{A}$	=	0	D - C	+	0	$\begin{gathered} B-\boldsymbol{A} \\ -(D-C) \end{gathered}$	
0	D-C		0	D-C		0	0	
		=	0	D - C	+	0		$B+C-A-D$
			0	D-C		0)	0

- Satisfying the regularity condition

$$
\begin{aligned}
B+C-A-D & >0 \\
E^{i, j}(0,1)+E^{i, j}(1,0)-E^{i, j}(0,0)-E^{i, j}(1,1) & >0 \\
\boldsymbol{E}^{i, j}(\mathbf{0}, \mathbf{0})+\boldsymbol{E}^{i, j}(\mathbf{1}, \mathbf{1}) & <\boldsymbol{E}^{i, j}(\mathbf{0}, \mathbf{1})+\boldsymbol{E}^{i, j}(\mathbf{1}, \mathbf{0})
\end{aligned}
$$

2. The class \mathcal{F}^{2}

- Adding an edge for $B+C-A-D$

2. The class \mathcal{F}^{2}

- Constructing the full graph for $E^{i, j}$
- For the case: $\boldsymbol{C}-\boldsymbol{A}>\mathbf{0}$ and $\boldsymbol{D}-\boldsymbol{C}<\mathbf{0}$

2. The class \mathcal{F}^{2}

- Scenario 1: Minimum cut at edge $\left(\boldsymbol{v}_{\boldsymbol{j}}, \boldsymbol{t}\right)$

$E^{i, j}(0,0)$	$E^{i, j}(0,1)$			
$E^{i, j}(1,0)$	$E^{i, j}(1,1)$	$=$	A	B
:---	:---			
C	D			

$$
\begin{gathered}
\left(v_{j}, t\right)<\left(s, v_{i}\right) \\
C-D<C-A \\
\boldsymbol{A}<\boldsymbol{D} \\
\left(v_{j}, t\right)<\left(v_{i}, v_{j}\right) \\
C-D<B+C-A-D \\
\boldsymbol{A}<\boldsymbol{B} \\
\left(s, v_{i}\right)>0 \\
C-A>0 \\
\boldsymbol{A}<\boldsymbol{C} \\
\Rightarrow \boldsymbol{A} \text { is the minimum }
\end{gathered}
$$

2. The class \mathcal{F}^{2}

- Scenario 2: Minimum cut at edge $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{\boldsymbol{j}}\right)$

$E^{i, j}(0,0)$	$E^{i, j}(0,1)$			
$E^{i, j}(1,0)$	$E^{i, j}(1,1)$	$=$	A	B
:---	:---			
C	D			

$$
\begin{aligned}
&\left(v_{i}, v_{j}\right)<\left(s, v_{i}\right) \\
& B+C-A-D<C-A \\
& \boldsymbol{B}<\boldsymbol{D} \\
&\left(v_{i}, v_{j}\right)<\left(v_{j}, t\right) \\
& B+C-A-D<C-D \\
& \boldsymbol{B}<\boldsymbol{A} \\
&\left(s, v_{i}\right)>0 \\
& C-A>0 \\
& A<C \\
& \boldsymbol{B}<\boldsymbol{C} \\
& \Rightarrow \boldsymbol{B} \text { is the minimum }
\end{aligned}
$$

2. The class \mathcal{F}^{2}

- Scenario 3

$E^{i, j}(0,0)$	$E^{i, j}(0,1)$			
$E^{i, j}(1,0)$	$E^{i, j}(1,1)$	$=$	A	B
:---	:---			
C	D			

$$
\begin{aligned}
&\left(v_{j}, t\right)>0 \\
& C-D>0 \\
& \boldsymbol{D}<\boldsymbol{C} \\
&\left(v_{i}, t\right)>0 \\
& A-C>0 \\
& C<A \\
& \boldsymbol{D}<\boldsymbol{A} \\
&\left(v_{i}, v_{j}\right)>0 \\
& B+C-A-D>0 \\
& D+(A-C)<B \\
& \boldsymbol{D}<\boldsymbol{B} \\
& \Rightarrow \text { D is the minimum }
\end{aligned}
$$

3. The class \mathcal{F}^{3}

- Functions that can be written as a sum of functions of up to three variables

$$
E\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} E^{i}\left(x_{i}\right)+\sum_{i<j} E^{i, j}\left(x_{i}, x_{j}\right)+\sum_{i<j<k} E^{i, j, k}\left(x_{i}, x_{j}, x_{k}\right)
$$

- E is graph-representable all functions of two variables are regular

$$
E^{i, j}(\mathbf{0}, \mathbf{0})+E^{i, j}(\mathbf{1}, \mathbf{1}) \leq E^{i, j}(\mathbf{0}, \mathbf{1})+E^{i, j}(\mathbf{1}, \mathbf{0})
$$

- E is graph-representable if all functions of more than two variables are regular. Such functions are regular if all of their projections are regular.

3. The class \mathcal{F}^{3}

- The concept of projections:

$$
\begin{array}{ll}
\text { For a function of } n \text { binary variables } & \boldsymbol{E}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right), \\
\text { a disjoint partition of the indices } & (\mathbf{1}, \ldots, \boldsymbol{n}): \boldsymbol{I}=\{\boldsymbol{i}(\mathbf{1}), \ldots, \boldsymbol{i}(\boldsymbol{m})\}, \boldsymbol{J}=\{\boldsymbol{j}(\mathbf{1}), \ldots, \boldsymbol{j}(\boldsymbol{n}-\boldsymbol{m})\}, \\
\text { and a set of binary constants } & \boldsymbol{\alpha}_{\boldsymbol{i}(\mathbf{1})}, \ldots, \boldsymbol{\alpha}_{i(m)}, \\
\text { the function } E^{\prime} \text { of } n-m \text { variables } & \boldsymbol{E}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{j}(\mathbf{1})}, \ldots, \boldsymbol{x}_{\boldsymbol{j}(\boldsymbol{n - m})}\right)=\boldsymbol{E}\left[\boldsymbol{x}_{\boldsymbol{i}(\mathbf{1})}=\boldsymbol{\alpha}_{\boldsymbol{i (1)}}, \ldots, \boldsymbol{x}_{\boldsymbol{i}(\boldsymbol{m})}=\boldsymbol{\alpha}_{\boldsymbol{i}(\boldsymbol{m})}\right] \\
\text { is a projection of } E & \boldsymbol{E}^{\prime}\left(\boldsymbol{x}_{\boldsymbol{j}(\mathbf{1})}, \ldots, \boldsymbol{x}_{\boldsymbol{j}(\boldsymbol{n}-\boldsymbol{m})}\right)=\boldsymbol{E}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)
\end{array}
$$

- We say that we have fixed the variables $\boldsymbol{x}_{\boldsymbol{i}(\mathbf{1})}=\boldsymbol{\alpha}_{\boldsymbol{i (1)})}, \ldots, \boldsymbol{x}_{\boldsymbol{i}(\boldsymbol{m})}$ where $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{\alpha}_{\boldsymbol{i}}$ for $\boldsymbol{i} \in \boldsymbol{I}$

3. The class \mathcal{F}^{3}

- A term $E^{i, j, k}$ depending on three variables x_{i}, x_{j} and x_{k} can be rewritten as follows:

$$
E^{i, j, k}=\begin{array}{|l|l|}
\hline E^{i, j, k}(\mathbf{0}, \mathbf{0}, \mathbf{0}) & E^{i, j, k}(\mathbf{0}, \mathbf{0}, \mathbf{1}) \\
\hline E^{i, j, k}(\mathbf{0}, \mathbf{1}, \mathbf{0}) & E^{i, j, k}(\mathbf{0}, \mathbf{1}, \mathbf{1}) \\
\hline E^{i, j, k}(\mathbf{1}, \mathbf{0}, \mathbf{0}) & E^{i, j, k}(\mathbf{1}, \mathbf{0}, \mathbf{1}) \\
\hline E^{i, j, k}(\mathbf{1}, \mathbf{1}, \mathbf{0}) & E^{i, j, k}(\mathbf{1}, \mathbf{1}, \mathbf{1}) \\
\hline \boldsymbol{C} & \boldsymbol{D} \\
\hline \boldsymbol{E} & \boldsymbol{F} \\
\hline \boldsymbol{G} & \boldsymbol{H} \\
\hline
\end{array}
$$

3. The class \mathcal{F}^{3}

- Expansion of $E^{i, j, k}$
(for the case $P>0$)

A	B
C	D
E	F
G	H

0	P_{3}
0	P_{3}
0	P_{3}
0	P_{3}

0	P_{23}
0	0
0	P_{23}
0	0

0	0
0	0
P_{31}	0
P_{31}	0

0	0
P_{12}	P_{12}
0	0
0	0

$+$| 0 | 0 |
| :---: | :---: |
| 0 | 0 |
| 0 | 0 |
| 0 | $-P$ |

10

3. The class \mathcal{F}^{3}

- Unary terms of $E^{i, j, k}$

0	0
0	0
P_{1}	P_{1}
P_{1}	P_{1}
P_{2}	P_{2}
0	0
P_{2}	P_{2}
0	P_{3}
0	P_{3}
0	P_{3}

$$
\begin{aligned}
P_{1} & =F-B \\
& =E^{i, j, k}(\mathbf{1}, 0,1)-E^{i, j, k}(\mathbf{0}, 0,1) \\
P_{2} & =G-E \\
& =E^{i, j, k}(1, \mathbf{1}, 0)-E^{i, j, k}(1, \mathbf{0}, 0) \\
P_{3} & =D-C \\
& =E^{i, j, k}(0,1, \mathbf{1})-E^{i, j, k}(0,1, \mathbf{0})
\end{aligned}
$$

3. The class \mathcal{F}^{3}

- Binary terms of $E^{i, j, k}$

0	P_{23}			
0	0			
0	P_{23}			
0	0			
0	0			
P_{31}	0			
P_{31}	0	$+$	0	0
:---:	:---:	:---:		
P_{12}	P_{12}			
0	0			
0	0			

$$
\begin{aligned}
P_{23} & =B+C-A-D \\
& =E^{i, j, k}(0, \mathbf{0}, \mathbf{1})+E^{i, j, k}(0, \mathbf{1}, \mathbf{0})-E^{i, j, k}(0, \mathbf{0}, \mathbf{0})-E^{i, j, k}(0, \mathbf{1}, \mathbf{1}) \\
P_{31} & =B+E-A-F \\
& =E^{i, j, k}(\mathbf{0}, \mathbf{0}, \mathbf{1})+E^{i, j, k}(\mathbf{1}, \mathbf{0}, \mathbf{0})-E^{i, j, k}(\mathbf{0}, 0, \mathbf{0})-E^{i, j, k}(\mathbf{1}, 0, \mathbf{1}) \\
P_{12} & =C+E-A-G \\
& =E^{i, j, k}(\mathbf{0}, \mathbf{1}, 0)+E^{i, j, k}(\mathbf{1}, \mathbf{0}, 0)-E^{i, j, k}(\mathbf{0}, \mathbf{0}, 0)-E^{i, j, k}(\mathbf{1}, \mathbf{1}, 0)
\end{aligned}
$$

3. The class \mathcal{F}^{3}

- Ternary term of $E^{i, j, k}$
- An auxiliary vertex $\boldsymbol{u}_{\boldsymbol{i j k}}$ is added

We want to represent this!

s

$$
P=(A+D+F+G)-(B+C+E+H)
$$

3. The class \mathcal{F}^{3}

- Scenario 1: $\boldsymbol{v}_{\boldsymbol{i}} \in \boldsymbol{S}$ and $\boldsymbol{u}_{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}} \in \boldsymbol{S}$

3. The class \mathcal{F}^{3}

- Scenario 2: $\boldsymbol{v}_{\boldsymbol{i}} \in \boldsymbol{S}$ and $\boldsymbol{u}_{\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}} \in \boldsymbol{T}$

3. The class \mathcal{F}^{3}

- Scenario 3: $x_{i}=x_{j}=x_{k}=1$
\Rightarrow the minimum cut is 0

10

3. The class \mathcal{F}^{3}

- Hence, it is shown that the cost of the minimum cut will always be \mathbf{P}, except for the case $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{j}}=\boldsymbol{x}_{\boldsymbol{k}}=\mathbf{1}$

0	0			
0	0			
0	0			
0	$-P$	$+$	P	P
:---	:---			
P	P			
P	P			
P	0			

$E^{i, j, k}(0,0,0)$	$E^{i, j, k}(0,0,1)$
$E^{i, j, k}(0,1,0)$	$E^{i, j, k}(0,1,1)$
$E^{i, j, k}(1,0,0)$	$E^{i, j, k}(1,0,1)$
$E^{i, j, k}(1,1,0)$	$E^{i, j, k}(1,1,1)$

4. Regularity

- If a function of binary variables is not regular, it is not graph-representable
- First, a more convenient definition of graph representability:

Graph representability

$\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is a graph,
v_{1}, \ldots, v_{n} is a subset of V, and
$\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\boldsymbol{k}}$ is a set of binary constants with values $\{\mathbf{0}, \mathbf{1}\}$.
$G\left[x_{1}=\alpha_{1}, \ldots, x_{k}=\alpha_{\boldsymbol{k}}\right]$ will be the same as in \boldsymbol{G},
plus additonal edges with infinite capacities corresponding to $\boldsymbol{v}_{1}, \ldots, v_{k}$, where $\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right)$ is added if $\boldsymbol{\alpha}_{\boldsymbol{i}}=\mathbf{0}$ or $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{t}\right)$ if $\boldsymbol{\alpha}_{\boldsymbol{i}}=\mathbf{1}$.
\boldsymbol{E} is exactly represented by \boldsymbol{G} if for any configuration $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\boldsymbol{n}}$, the minimum cut on $G\left[x_{1}=\alpha_{1}, \ldots, x_{k}=\alpha_{k}\right]=E\left[\alpha_{1}, \ldots, \alpha_{n}\right]$.

4. Regularity

- The edges with infinite capacities impose constraints on the minimum cut of $G\left[x_{1}=\alpha_{1}, \ldots, x_{k}=\alpha_{k}\right]$
- For example: $\boldsymbol{\alpha}_{\boldsymbol{1}}=\mathbf{0}$ and $\boldsymbol{v}_{\boldsymbol{i}} \in \boldsymbol{T}$

- $\left(\boldsymbol{s}, \boldsymbol{v}_{\boldsymbol{i}}\right)$ is prohibited from being the minimum cut, as cutting it yields an infinite cost

4. Regularity

- Let us prove that regularity is a necessary condition for graph-representability
- Consider a graph-representable function $\bar{E}\left(x_{1}, x_{2}\right)$

0	0	$=\bar{E}(0,0)+$	0	$-\bar{E}(0,1)$		0	0	+	$\bar{E}(0,0)$	$\bar{E}(0,1)$
0	A		0	$-\bar{E}(0,1)$		$-\bar{E}(1,0)$	$-\bar{E}(1,0)$		$\bar{E}(1,0)$	$\bar{E}(1,1)$

- Each function on the right hand side is graph-representable
- Hence, the function on the left hand side is graph-representable as well (Additivity theorem)

$$
\text { Let } \begin{aligned}
& E=\begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 0 & A \\
\hline A & =\bar{E}(0,0)+\bar{E}(1,1)-\bar{E}(0,1)-\bar{E}(1,0) \\
A & \leq \mathbf{0}
\end{array} \text { be represented by the graph } \boldsymbol{G} \\
&
\end{aligned}
$$

4. Regularity

- Let $\boldsymbol{A}>\mathbf{0}$.
- The minimum cut and maximum flow of \boldsymbol{G} is 0 . There is no augmenting path from \boldsymbol{s} to \boldsymbol{t}
- Let us add the edges $\left(\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{t}\right)$ and $\left(\boldsymbol{v}_{2}, \boldsymbol{t}\right)$ to \boldsymbol{G}. There must be an augmenting path from \boldsymbol{s} to \boldsymbol{t} to satisfy $\boldsymbol{E}(\mathbf{1}, \mathbf{1})>\mathbf{0}$

$E=$| 0 | 0 |
| :--- | :--- |
| 0 | A |$=$| $E(0,0)$ | $E(0,1)$ |
| :--- | :--- |
| $E(1,0)$ | $E(1,1)$ |

\uparrow Added edge
Augmenting path
\uparrow Infinite edge

4. Regularity

- Let $\boldsymbol{G}\left[\boldsymbol{x}_{\mathbf{1}}=\mathbf{1}, \boldsymbol{x}_{2}=\mathbf{0}\right]$ by adding edges $\left(\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{t}\right)$ and $\left(\mathbf{s}, \boldsymbol{v}_{2}\right)$ with infinite capacities
- There exists an augmenting path $\left\{\boldsymbol{P},\left(\boldsymbol{v}_{1}, \boldsymbol{t}\right)\right\}$ from \boldsymbol{s} to \boldsymbol{t}
- The maximum flow (minimum cut) is therefore greater than 0 , meaning $E(\mathbf{1}, \mathbf{0})>\mathbf{0}$
- We get a contradiction!

$$
E=\begin{array}{|l|l|}
\hline 0 & 0 \\
\hline 0 & A \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline E(0,0) & E(0,1) \\
\hline E(1,0) & E(1,1) \\
\hline
\end{array}
$$

\uparrow Added edge
Augmenting path
\uparrow Infinite edge

5. Summary

- Shown how energy functions can be represented as graphs, where the minimum s-t cut minimizes the energy
- Presented the class \mathcal{F}^{2} for functions of up to two binary variables and a means of graph construction
- Presented the class $\mathcal{F}^{\mathbf{3}}$ for functions of up to three binary variables and a means of graph construction
- Shown that regularity is a necessary condition for graph-representability
- Based on the paper by V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004.

Questions?

Thanks for your attention! :)

