

Seminar for Image Segmentation and Shape Analysis (IN2107)

Wintersemester 2016/2017

What energy functions can be minimized via graph cuts?

Name	: Jude Ng
Date	: 26.10.2016

1. Motivation

- Many vision problems can be expressed in terms of energy minimization
- The goal is to find a labeling $f : P \to L$
- Example: foreground extraction

Original image and the extracted foreground *

A standard form of an energy function

$$E(f) = E_{data} + E_{smoothness}$$

$$E_{smoothness}(f) = \sum_{\{p,q\}\in N} V_{p,q}(f_p, f_q)$$
$$E_{tate}(f) = \sum_{p} D_{n}(f_p)$$

$$E_{data}(f) = \sum_{p \in P} D_p(f_p)$$

- *E* is non-convex with a high-dimensional space and is difficult to minimize
- Usually solved with simulated annealing, which is slow in practice

* Images from: S. Denman, C. Fookes and S. Sridharan, "Improved Simultaneous Computation of Motion Detection and Optical Flow for Object Tracking", DICTA '09

1. Motivation

- A recent approach to minimize *E* based on graph cuts
- Basic technique: construct a specialized graph to represent *E*

Graph representability

 $G = (V, \mathcal{E})$ with terminals s and tand a subset $V_o = \{v_1, ..., v_n\} \subset V - \{s, t\}$

A cut *C* partitions the V_o into two sets *S* and *T*, where $v_i \in S$ if $x_i = 0$ and $v_i \in T$ if $x_i = 1$

 $E(x_1, ..., x_n)$ is equal to the minimum s-t cut among all cuts C

- The minimum cut on the graph minimizes *E*
- Minimum cut can be computed efficiently with the Ford-Fulkerson max-flow algorithm
- Problem: Graph construction is complex
- Is there a class of *E* that can be minimized via graph cuts?

• Functions that can be written as a **sum of functions of up to two variables**

$$E(x_1,\ldots,x_n) = \sum_i E^i(x_i) + \sum_{i < j} E^{i,j}(x_i,x_j)$$

• *E* is graph-representable if and only if each term $E^{i,j}$ satisfies the **regularity** condition

 $E^{i,j}(0,0) + E^{i,j}(1,1) \le E^{i,j}(0,1) + E^{i,j}(1,0)$

- Regularity is analogous to **submodular functions**
- Non-regular functions are **NP-hard** to minimize

- A term E^i depending on **one variable** x_i
- Case 1: $E^i(0) < E^i(1)$

• Case 2: $E^i(1) < E^i(0)$

• A term $E^{i,j}$ depending on **two variables** x_i and x_j can be rewritten as follows:

Fi.i	_	$E^{i,j}(0,0)$	$E^{i,j}(0,1)$	_	A	В
$E^{i,j} =$	$E^{i,j}(1,0)$	$E^{i,j}(1,1)$	-	С	D	

• Expansion of $E^{i,j}$

• Expansion of $E^{i,j}$

• Satisfying the regularity condition

$$B + C - A - D > 0$$

$$E^{i,j}(0,1) + E^{i,j}(1,0) - E^{i,j}(0,0) - E^{i,j}(1,1) > 0$$

$$E^{i,j}(0,0) + E^{i,j}(1,1) < E^{i,j}(0,1) + E^{i,j}(1,0)$$

• Adding an edge for B + C - A - D

- Constructing the full graph for $E^{i,j}$
- For the case: C A > 0 and D C < 0

• Scenario 1: Minimum cut at edge (v_i, t)

$E^{i,j}(0,0)$	$E^{i,j}(0,1)$		Α	В
$E^{i,j}(1,0)$	$E^{i,j}(1,1)$	=	С	D

 $(v_j, t) < (s, v_i)$ C - D < C - AA < D

 $(s, v_i) > 0$ C - A > 0A < C

 \Rightarrow *A* is the minimum

• Scenario 2: Minimum cut at edge (v_i, v_j)

$E^{i,j}(0,0)$	$E^{i,j}(0,1)$		Α	В
$E^{i,j}(1,0)$	$E^{i,j}(1,1)$	=	С	D

 $(v_i, v_j) < (s, v_i)$ B + C - A - D < C - AB < D

 $(v_i, v_j) < (v_j, t)$ B + C - A - D < C - DB < A

> $(s, v_i) > 0$ C - A > 0 A < CB < C

 \Rightarrow *B* is the minimum

S

• Scenario 3

A - C $B + C - A - D$ t		
A - C $B + C - A - D$ t		
B + C - A - D $C - D$	A-C	
C – D	B+C-A-D	
	C – D	

$E^{i,j}(0,0)$	$E^{i,j}(0,1)$		Α	В
$E^{i,j}(1,0)$	$E^{i,j}(1,1)$	=	С	D

$$(v_i, v_j) > 0$$

$$B + C - A - D > 0$$

$$D + (A - C) < B$$

$$D < B$$

 \Rightarrow *D* is the minimum

• Functions that can be written as a **sum of functions of up to three variables**

$$E(x_1, ..., x_n) = \sum_i E^i(x_i) + \sum_{i < j} E^{i,j}(x_i, x_j) + \sum_{i < j < k} E^{i,j,k}(x_i, x_j, x_k)$$

• *E* is graph-representable **all functions of two variables** are **regular**

 $E^{i,j}(0,0) + E^{i,j}(1,1) \le E^{i,j}(0,1) + E^{i,j}(1,0)$

E is graph-representable if all functions of more than two variables are regular.
 Such functions are regular if all of their projections are regular.

• The concept of **projections**:

For a function of n binary variables $E(x_1, ..., x_n)$,a disjoint partition of the indices $(1, ..., n): I = \{i(1), ..., i(m)\}, J = \{j(1), ..., j(n - m)\},$ and a set of binary constants $\alpha_{i(1)}, ..., \alpha_{i(m)},$ the function E' of n - m variables $E'(x_{j(1)}, ..., x_{j(n-m)}) = E[x_{i(1)} = \alpha_{i(1)}, ..., x_{i(m)} = \alpha_{i(m)}]$ is a projection of E $E'(x_{j(1)}, ..., x_{j(n-m)}) = E(x_1, ..., x_n)$

• We say that we have fixed the variables $x_{i(1)} = \alpha_{i(1)}, ..., x_{i(m)}$ where $x_i = \alpha_i$ for $i \in I$

• A term $E^{i,j,k}$ depending on **three variables** x_i , x_j and x_k can be rewritten as follows:

	$E^{i,j,k}(0,0,0)$	$E^{i,j,k}(0,0,1)$		A	В
riik –	$E^{i,j,k}(0,1,0)$	$E^{i,j,k}(0,1,1)$		С	D
$E^{ijjii} =$	$E^{i,j,k}(1,0,0)$	$E^{i,j,k}(1,0,1)$	=	E	F
	$E^{i,j,k}(1,1,0)$	$E^{i,j,k}(1,1,1)$		G	H

• Expansion of $E^{i,j,k}$

(for the case P > 0)

• Unary terms of $E^{i,j,k}$

0	0		0	0		0	P ₃
0	0		P ₂	P ₂		0	<i>P</i> ₃
P ₁	P ₁	Ŧ	0	0	т	0	<i>P</i> ₃
P ₁	P ₁		P ₂	P ₂		0	P ₃

$$P_1 = F - B$$

= $E^{i,j,k}(\mathbf{1}, 0, 1) - E^{i,j,k}(\mathbf{0}, 0, 1)$

$$P_2 = G - E$$

= $E^{i,j,k}(1, \mathbf{1}, 0) - E^{i,j,k}(1, \mathbf{0}, 0)$

$$P_3 = D - C$$

= $E^{i,j,k}(0,1,1) - E^{i,j,k}(0,1,0)$

• Binary terms of $E^{i,j,k}$

0	P ₂₃		0	0		0	0
0	0	Ŧ	0	0		P ₁₂	<i>P</i> ₁₂
0	P ₂₃	т	P ₃₁	0	T	0	0
0	0		P ₃₁	0		0	0

$$P_{23} = B + C - A - D$$

= $E^{i,j,k}(0, 0, 1) + E^{i,j,k}(0, 1, 0) - E^{i,j,k}(0, 0, 0) - E^{i,j,k}(0, 1, 1)$

$$P_{31} = B + E - A - F$$

= $E^{i,j,k}(\mathbf{0}, 0, \mathbf{1}) + E^{i,j,k}(\mathbf{1}, 0, \mathbf{0}) - E^{i,j,k}(\mathbf{0}, 0, \mathbf{0}) - E^{i,j,k}(\mathbf{1}, 0, \mathbf{1})$

 $P_{12} = C + E - A - G$ = $E^{i,j,k}(\mathbf{0}, \mathbf{1}, 0) + E^{i,j,k}(\mathbf{1}, \mathbf{0}, 0) - E^{i,j,k}(\mathbf{0}, \mathbf{0}, 0) - E^{i,j,k}(\mathbf{1}, \mathbf{1}, 0)$

- Ternary term of $E^{i,j,k}$
- An **auxiliary vertex** u_{ijk} is added

P = (A + D + F + G) - (B + C + E + H)

S

• Scenario 1: $v_i \in S$ and $u_{i,j,k} \in S$

 \Rightarrow the minimum cut is P

• Scenario 2: $v_i \in S$ and $u_{i,j,k} \in T$

 \Rightarrow the minimum cut is P

• Scenario 3: $x_i = x_j = x_k = 1$

 \Rightarrow the minimum cut is 0

• Hence, it is shown that the cost of the minimum cut will always be **P**,

except for the case $x_i = x_j = x_k = 1$

$E^{i,j,k}(0,0,0)$	$E^{i,j,k}(0,0,1)$
$E^{i,j,k}(0,1,0)$	$E^{i,j,k}(0,1,1)$
$E^{i,j,k}(1,0,0)$	$E^{i,j,k}(1,0,1)$
$E^{i,j,k}(1,1,0)$	$E^{i,j,k}(1,1,1)$

- If a function of binary variables is not regular, it is not graph-representable
- First, a more convenient definition of graph representability:

Graph representability

 $G = (V, \mathcal{E})$ is a graph, v_1, \dots, v_n is a subset of V, and $\alpha_1, \dots, \alpha_k$ is a set of binary constants with values $\{0, 1\}$.

 $G[x_1 = \alpha_1, ..., x_k = \alpha_k]$ will be the same as in G, plus additonal edges with **infinite capacities** corresponding to $v_1, ..., v_k$, where (s, v_i) is added if $\alpha_i = 0$ or (v_i, t) if $\alpha_i = 1$.

E is exactly represented by *G* if for any configuration $\alpha_1, ..., \alpha_n$, the minimum cut on $G[x_1 = \alpha_1, ..., x_k = \alpha_k] = E[\alpha_1, ..., \alpha_n]$.

- The edges with infinite capacities impose **constraints on the minimum cut** of $G[x_1 = \alpha_1, ..., x_k = \alpha_k]$
- For example: $\alpha_1 = 0$ and $\nu_i \in T$

• (s, v_i) is prohibited from being the minimum cut, as cutting it yields an infinite cost

- Let us prove that regularity is a necessary condition for graph-representability
- Consider a graph-representable function $\overline{E}(x_1, x_2)$

- Each function on the right hand side is graph-representable
- Hence, the function on the left hand side is graph-representable as well (Additivity theorem)

Let
$$E = \boxed{\begin{array}{c} 0 & 0 \\ 0 & A \end{array}}$$
 be represented by the graph G
 $A = \overline{E}(0,0) + \overline{E}(1,1) - \overline{E}(0,1) - \overline{E}(1,0)$
 $A \leq \mathbf{0}$

- Let A > 0.
- The minimum cut and maximum flow of **G** is 0. There is no augmenting path from **s** to **t**
- Let us add the edges (v_1, t) and (v_2, t) to G. There must be an augmenting path from s to t to satisfy E(1, 1) > 0

- Let $G[x_1 = 1, x_2 = 0]$ by adding edges (v_1, t) and (s, v_2) with infinite capacities
- There exists an augmenting path $\{P, (v_1, t)\}$ from s to t
- The maximum flow (minimum cut) is therefore greater than 0, meaning E(1,0) > 0
- We get a **contradiction!**

- Shown how energy functions can be represented as graphs, where the minimum s-t cut minimizes the energy
- Presented the class \mathcal{F}^2 for functions of up to two binary variables and a means of graph construction
- Presented the class \mathcal{F}^3 for functions of up to three binary variables and a means of graph construction
- Shown that regularity is a necessary condition for graph-representability
- Based on the paper by V. Kolmogorov and R. Zabin, "What energy functions can be minimized via graph cuts?," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2004.

Questions?

IN2107 – Seminar for Image Segmentation and Shape Analysis

Thanks for your attention! ③