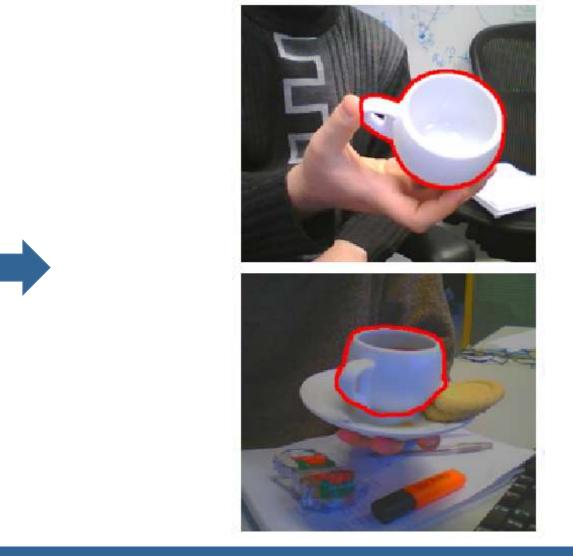
Branch-and-Mincut: Global Optimization for Image Segmentation with High-Level Priors

Marcel Cordoví Solés

IN2107 - Image Segmentation and Shape Analysis

Problem Statement

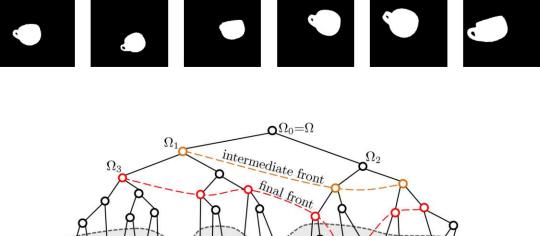


Problem Statement

Applying st-mincut with localized lowlevel cues

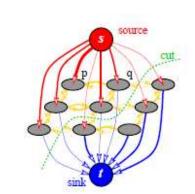
Framework Overview

- A large discrete set of non-local parameters as the space representing the prior knowledge Ω is defined.
- An energy based on both, the graph partition and the non-local parameters is defined.
- The Branch and Bound algorithm guaranties to find the energy's global minima.
- The st-mincut algorithm is used within Branch-and-Bound search to efficiently compute lower bounds over the tree branches.



 ω_l

globally-optimal u



Application to the UIUC car dataset

Input image

Local cues encoded

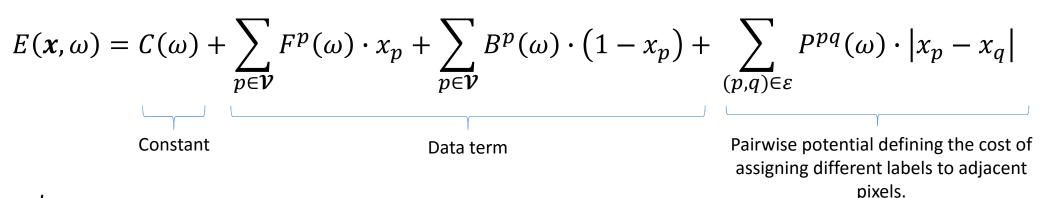
on a graph.

Shape prior. Parameterized by (x, y, shape)

Global optimum

Branch-and-Mincut Optimization Framework

General Energy Function



where,

- $\omega \in \Omega$: Shape prior case: product space of various poses and deformations Color prior case: set of parametric color distributions
- $x\in 2^{\mathcal{V}}$: Is a segmentation, a labeling assignment to the pixels in ${\mathcal{V}}$

 $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$: Defines a vecinity of the pixel *p*.

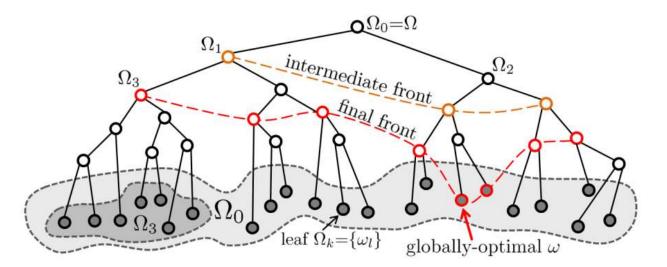
Branch and Bound Minimization

The domain Ω is hierarchically clustered in a tree of subregions: $T_{\Omega} = \{\Omega_0, \Omega_1, \dots, \Omega_N\}$

Intermediate nodes correspond to subregions of the domain: $\Omega_{child(k)} \subset \Omega_k$

Leafs corresponds to the singleton subsets: $\Omega_{leaf} = \{\omega_t\}$

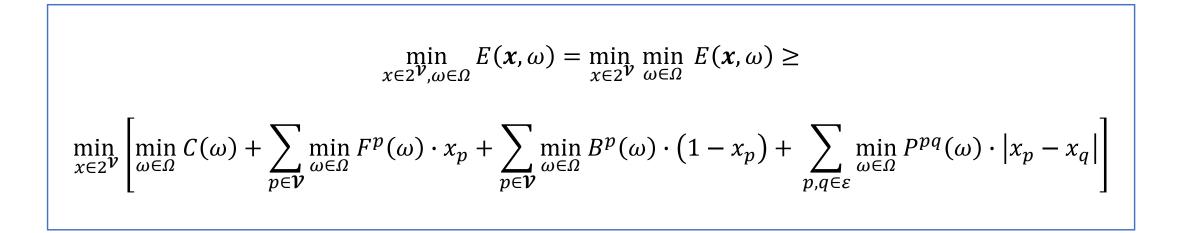
A best-first branch and bound search is performed on T_{Ω} by mantaining an active front that moves towards the leafs decreasing the lowest lower bound at each step.



For applying this framework we need to:

- Define an energy function on $2^{\nu} \times \Omega$. $(F^{p}(\omega), B^{p}(\omega), P^{pq}(\omega))$
- A lower bound function for the energy.
- Build the Branch and Bound tree on \varOmega .

Let $L(\Omega)$ be the lower bound of $E(\mathbf{x}, \omega)$ in the domain $2^{\mathcal{V}} \times \Omega$. We can derive it as follows:



Which have three esential properties that makes it suitable for the Branch-and-Mincut framework:

Lower Bound Function Properties

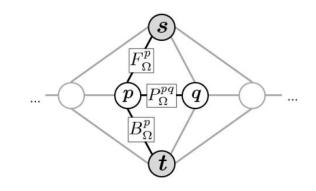
• Monotonicity: for nested domains of non-local parameters $\Omega_2 \subset \Omega_1$ it holds that:

 $L(\Omega_2) \leq L(\Omega_1)$

- **Computability:** The bound equals the minimum of a quadratic submodular boolean function which can be realized on a network graph such that each configuration of the binary variables is in one-to-one correspondence with an st-cut of the graph having weight equal to the value of the function. $L(\Omega)$ can then be calculated in polynomial time on $|\mathcal{V}|$.
- **Tightness:** for each singleton Ω , it holds that:

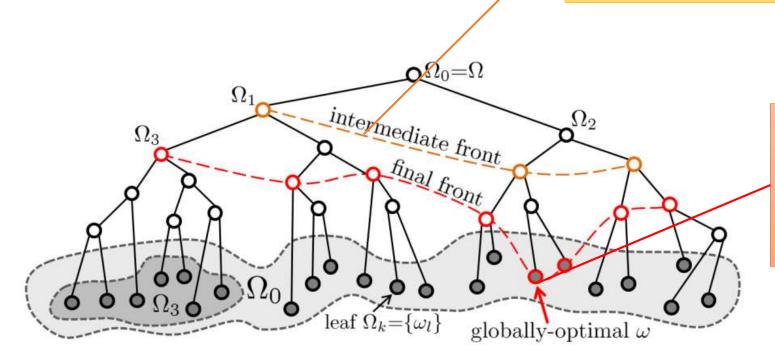
$$L(\{\omega\}) = \min_{\boldsymbol{x}\in 2^{\mathcal{V}}} E(\boldsymbol{x}, \omega)$$

In which case the the minimal st-mincut yields the optimal segmentation for ω .



Branch and Bound

Due to the monotonicity: $L(\Omega_{child(k)}) \leq L(\Omega_k)$ And the lowest lower bound of the active front constitutes a lower bound on the global optimum over the entire domain.



The first leaf $\{\omega'\}$ reached has the lowest bound in the front and hence of the whole domain. Due to the tightness property, $E(\mathbf{x}', \omega') = L(\omega')$ which is consequently a global minimum of the energy function.

Segmentation with shape priors

The prior is defined as the set of exemplar binary segmentations

$$\Omega = \{y^{\omega} \in 2^{\mathcal{V}}\}$$

Were Ω is the discrete set of exemplar segmentations.

The following functional is introduced:

$$E_{prior}(\mathbf{x},\omega) = \rho(\mathbf{x},\mathbf{y}^{\omega}) = \sum_{p\in\mathcal{V}} (1-y_p^{\omega}) \cdot x_p + \sum_{p\in\mathcal{V}} y_p^{\omega} \cdot (1-x_p) + \sum_{p,q\in\varepsilon} \lambda \frac{e^{-\frac{\|\mathbf{\kappa}_p - \mathbf{\kappa}_q\|}{\sigma}}}{|p-q|} \cdot |x_p - x_q|$$

$$\rho \text{ denotes the hamming distance}$$
Between segmentations.
Joint prior over the segmentation and the non-local parameter
Contrast sensitive edge term

The domain Ω is factorized into the cartesian product of two sets:

$$\Omega_{shape} = \Delta \times \Theta, \qquad \omega = \delta \times \theta$$

Where Δ indexes the set of all segmentations centered at the origin corresponding to variations in scale, orientation and non-rigid deformations.

And Θ corresponds to shift transformations and ensures the translation invariance of the prior.

The branch and bound prior tree $T_{\Omega} = \{\Omega_0, \Omega_1, ..., \Omega_N\}$ is generated by combining the two factor trees:

$$T_{\Delta} = \{\Delta_0, \Delta_1, \dots, \Delta_N\} \qquad \qquad T_{\Theta} = \{\Theta_0, \Theta_1, \dots, \Theta_N\}$$

for which the concept of *loseness* is introduced.

The loseness of a nodeset Ω_t is defined as the number of pixels that change their mask value under different shapes in Ω_t .

$$\Lambda(\Omega_t) = \left| \left\{ p \mid \exists \delta_1, \theta_1 \colon y_p^{\delta_1 \times \theta_1} = 0 \land \exists \delta_2, \theta_2 \colon y_p^{\delta_2 \times \theta_2} = 1 \right\} \right|$$

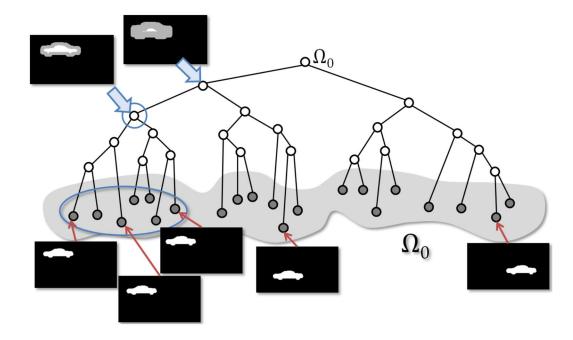
Given the two possible node splits along each of the dimensions:

Split along the shape dimension: $\Delta_{ch1(p(t))} \times \Theta_{q(t)}$ and $\Delta_{ch2(p(t))} \times \Theta_{q(t)}$ Split along the shape dimension: $\Delta_{p(t)} \times \Theta_{ch1(q(t))}$ and $\Delta_{p(t)} \times \Theta_{ch2(p(t))}$

The one that minimizes the sum of loseness is prefered.

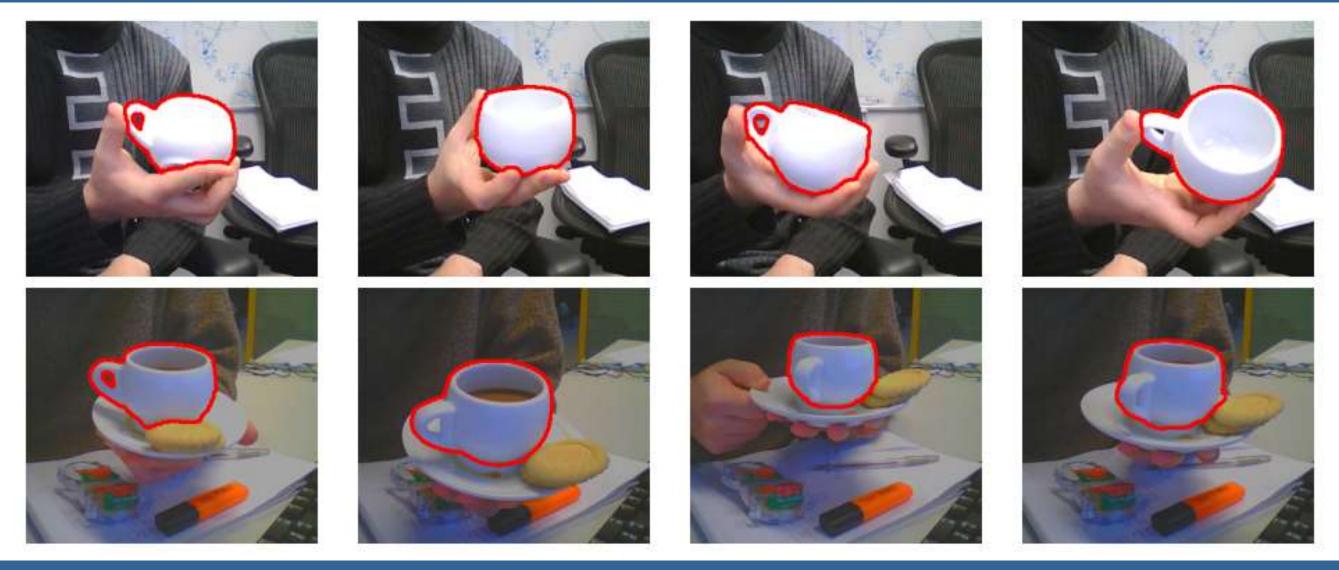
Construction of the shape prior

Hierarchical clustering of similar segmentations

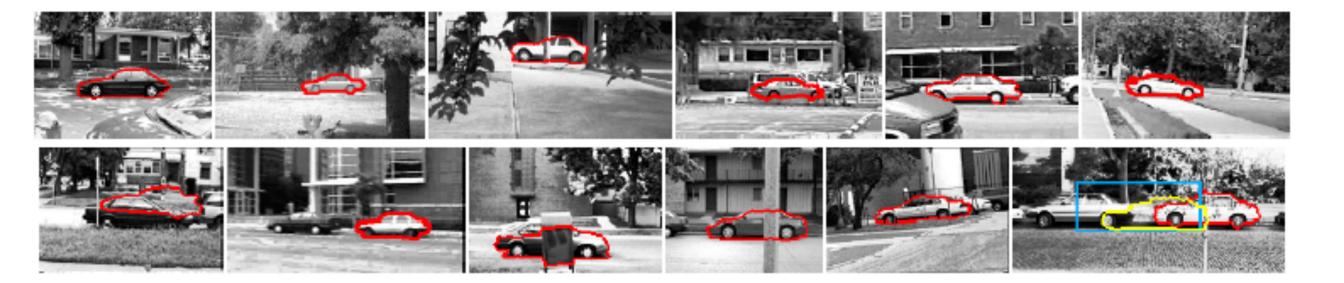


- Each Node correspond to a set of shapes.
- The set of leafs corresponds to the set of binary masks defining the shape prior.
- The image shows the potentials B_{Ω} and F_{Ω} of a node.
- The gray pixels corresponds to the amount of loseness of the mask.

Experimental results



Experimental results



Questions?