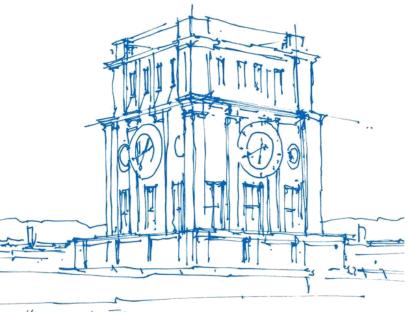
A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion

Jian Sun, Maks Ovsjanikov, Leonidas Guibas (2009)

Presented by: Julia Fokuhl Technische Universität München Image Segmentation and Shape Analysis

14th December 2016



Uliventurin der TVM

ТЛП

Motivation

Characterise shapes

Gain information about the geometry

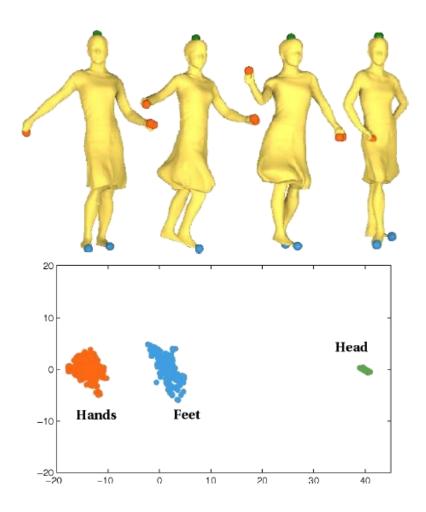
Identify features

Motivation - Applications

Shape Comparison/ Matching shapes

Detect repeated structures (across one or more shapes)

Classification



Heat Kernel Signature (HKS)

Point signature based on heat diffusion Preserves information about intrinsic geometry

Properties:

- Efficient calculation
- Concise
- Multi-scale
- Stable
- Invariant under isometric deformations

Heat Diffusion

on a compact Riemannian manifold M:

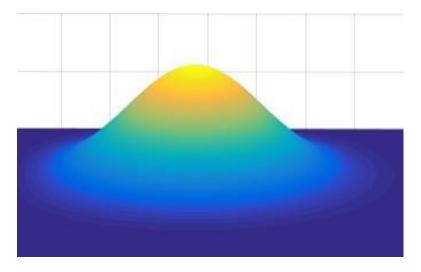
$$\Delta u(x,t) = -\frac{\partial u(x,t)}{\partial t}$$

with

Δ: Laplace-Beltrami-Operator

u(x,t): heat distribution at point x and time t

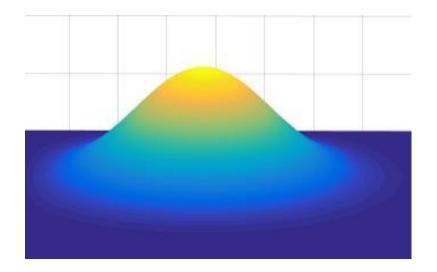
If *M* has boundaries, the Dirichlet boundary condition has to be fulfilled: u(x,t) = 0 for all $x \in \partial M$ and all t



Heat Diffusion

$$\Delta u(x,t) = -\frac{\partial u(x,t)}{\partial t}$$

Initial heat distribution $f : M \rightarrow \mathbb{R}$ Heat distribution after time t \rightarrow Heat Operator: $H_t(f)$

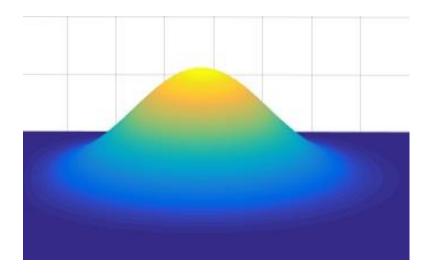


Relation for the operators: $H_t = e^{-t\Delta}$ thus both operators H_t and Δ share the same eigenfunctions

Heat Kernel

$$\Delta u(x,t) = -\frac{\partial u(x,t)}{\partial t}$$

$$H_t f(x) = \int_M k_t(x, y) f(y) dy$$



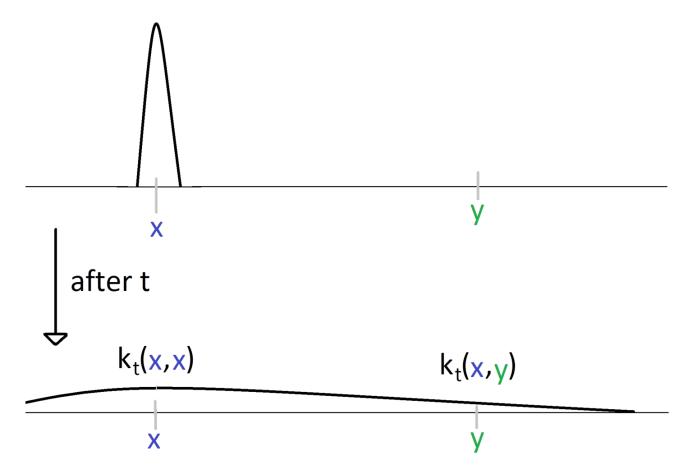
dy: volume form at $y \in M$

 $k_t(x, y)$: heat kernel (amount of heat transferred from x to y in time t given a unit heat source at x)

 $k_t(x,\cdot) = H_t(\delta_x)$ with δ_x : Dirac-Delta

Heat Kernel

amount of heat transferred from x to y in time t given a unit heat source at x



A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion

ТШ

Heat Kernel

can be represented in the Laplace-Beltrami eigenbasis

Eigendecomposion:

$$k_t(x,y) = \sum_{i=0}^{\infty} e^{-\lambda_i t} \phi_i(x) \phi_i(y)$$

 $\phi_i(x)$: ith eigenfunction of the Laplace-Beltrami-Operator λ_i : ith eigenvalue of the Laplace-Beltrami-Operator

Repetition: Intrinsic Isometry

Mapping $\Phi: M \rightarrow N$ between two shapes M, N is an isometry, if the geodesic distances are preserved

Image adapted from: Shtern, A.; Kimmel, R. Matching the LBO Eigenspace of Non-Rigid Shapes via High Order Statistics. *Axioms* **2014**, *3*, 300-319.

Heat Kernel

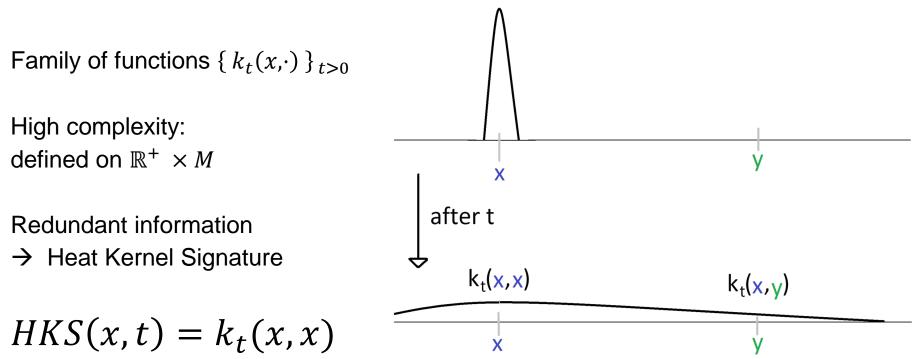
is intrinsic \rightarrow is an isometric invariant

If $\Phi : M \to N$ is an isometry between Riemannian manifolds M and N, then $k_t^M(x, y) = k_t^N(\Phi(x), \Phi(y))$ for any $x, y \in M$ and t > 0

is informative \rightarrow fully characterises shapes up to isometry

Let $\Phi: M \to N$ be surjective map between Riemannian manifolds M and NIf $k_t^M(x, y) = k_t^N(\Phi(x), \Phi(y))$ for any $x, y \in M$ and t > 0, then Φ is an isometry

Heat Kernel



for a point x on the manifold M: HKS(x): $\mathbb{R}^+ \to \mathbb{R}$,

Heat Kernel Signature

 $HKS(x,t) = k_t(x,x)$

Dropping spatial domain

 $\{k_t(x,x)\}_{t>0}$ is almost as informative as $\{k_t(x,\cdot)\}_{t>0}$

HKS at different points are defined on a common temporal domain \rightarrow Easily commensurable

Properties:

- ✓ Efficient calculation
- ✓ Concise
- Multi-scale
- Stable
- Invariant under isometric deformations

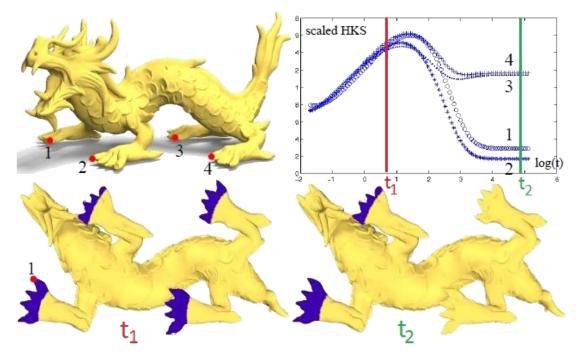
Time as scaling parameter

Dissipation of heat from a point x Heat diffuses progressively to larger neighbourhoods

Highly local features/ Small Neighbourhood – observed at short times

Big features/ Global Structure – observed after long times

→ Time as scaling parameter
→ Multi-scale Signature

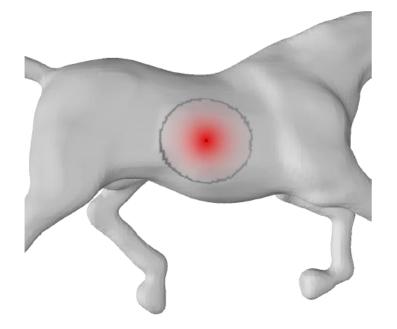


ТШП

Multiscale

Subset $D \subseteq M$ (D: grey circle on horse) $k_t^D(x, y)$ is a good approximation of $k_t(x, y)$ in case that

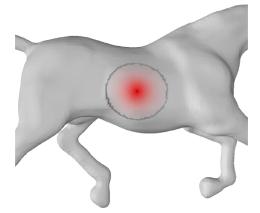
- D is arbitrary small as long as t is small $\lim_{t\to 0} k_t^D(x, y) = k_t(x, y)$
- t is arbitrary large as long as D is big



Multiscale

Subset $D \subseteq M$ (D: grey circle on horse) $k_t^D(x, y)$ is a good approximation of $k_t(x, y)$ in case that

- D is arbitrary small as long as t is small $\lim_{t\to 0} k_t^D(x, y) = k_t(x, y)$
- t is arbitrary large as long as D is big

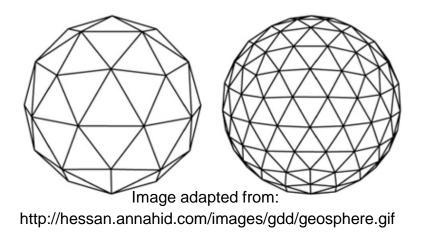


Properties:

- ✓ Efficient calculation
- ✓ Concise
- ✓ Multi-scale
- Stable
- Invariant under isometric deformations

HKS in discrete settings

Underlying manifold unknown Approximation by mesh with n vertices



Estimation of the Laplace-Beltrami Operator: Mesh Laplace Operator L^1 $L = A^{-1}W$

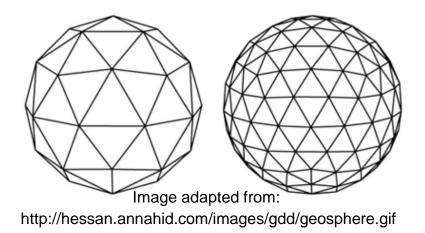
- *L*: sparse matrix of size $n \times n$
- A: positive diagonal matrix
- A(i, i) represents an area associated with vertex i
- W: symmetric semi-definite matrix

[1]: Belkin M., Sun J., Wang Y.: Discrete Laplace operator on meshed surfaces. In *Proceedings of SOGC* (2008), pp.278-287
A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion

HKS in discrete settings

Heat Equation on the mesh:

$$Lu_t = -\frac{\partial u_t}{\partial t}$$



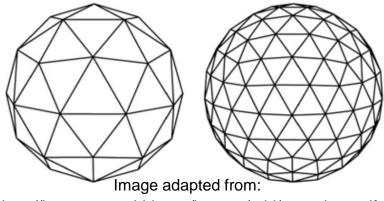
Reminder for continuous case:

$$\Delta u(x,t) = -\frac{\partial u(x,t)}{\partial t}$$

 $u_t(x)$: time-dependent function defined on a vertex x at time t

HKS in discrete settings

 $u_t = e^{-tL}f$



http://hessan.annahid.com/images/gdd/geosphere.gif

$$u_t(x) = \sum_{y} k_t(x, y) f(y) A(y)$$

$$k_t(x,y) = \sum_{i=0}^n e^{-\lambda_i t} \phi_i(x) \phi_i(y)$$

HKS encodes information about the neighbourhood of a point

Matching \rightarrow Compare HKS of two points in a specific interval [t_1, t_2]

$$(\int_{t_1}^{t_2} |k_t(x,x) - k_t(x',x')|^2 dt)^{1/2}$$

Successful match if expression is approximately 0

Heuristic adaptions:

 $|k_t(x, x) - k_t(x', x')|$ decreases with increasing t \rightarrow At small scales differences seem larger

Reminder:
$$k_t(x, x) = \sum_i e^{-\lambda_i t} \phi_i^2(x)$$

Use normalisation:

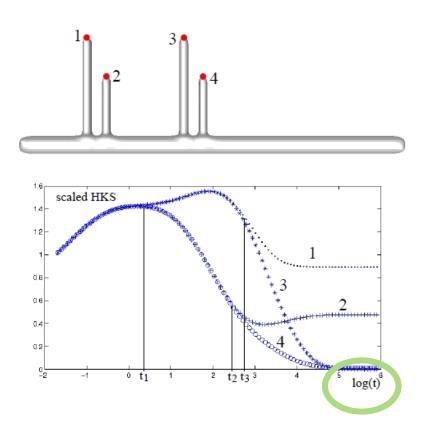
Scale with
$$\int_M k_t(x, x) \, dx$$

Heuristic adaptions:

 $k_t(x, x)$ varies strongly between small times slower variation for larges times

Intuitive explanation: HKS changes more rapidly at small scales, large neighbourhoods are rather stable

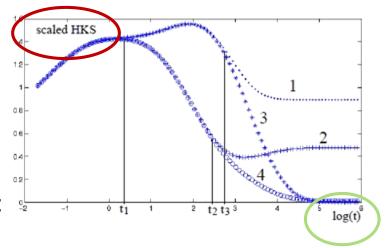
 \rightarrow Scale temporal domain logarithmically



Heuristic adaptions:

→ Scale with $\int_M k_t(x, x) dx$ (normalisation) → Scale temporal domain logarithmically

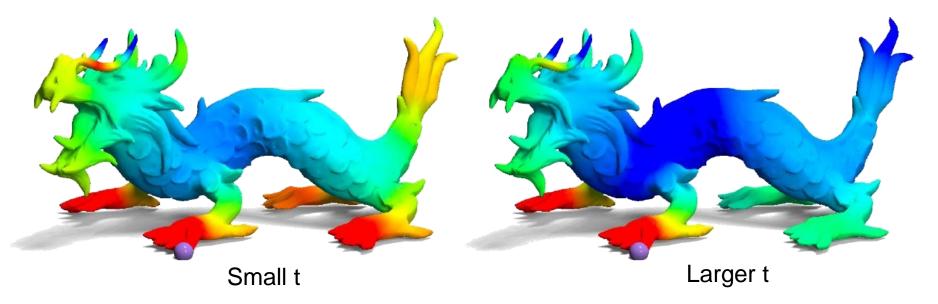
Difference between two Heat Kernel Signatures:



$$d_{[t1,t2]}(x,x') = \left(\int_{t_1}^{t_2} \left(\frac{|k_t(x,x) - k_t(x',x')|}{\int_M k_t(x,x) \, dx}\right)^2 d(\log t)\right)^{1/2}$$

$$d_{[t1,t2]}(x,x') = \left(\int_{t_1}^{t_2} \left(\frac{|k_t(x,x) - k_t(x',x')|}{\int_M k_t(x,x) \, dx}\right)^2 d(\log t)\right)^{1/2}$$

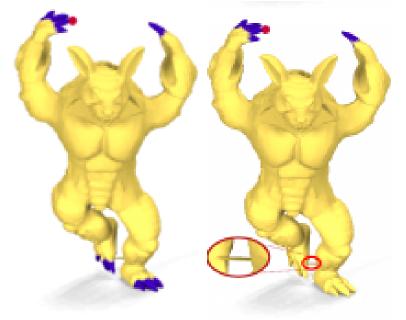
Distance function between HKS of purple point to all other points: Red \rightarrow difference ≈ 0 Blue \rightarrow highest difference to purple point



Special Benefits of the HKS

Resilience to Noise:

Small tunnel between feet models noise Method still works reliably



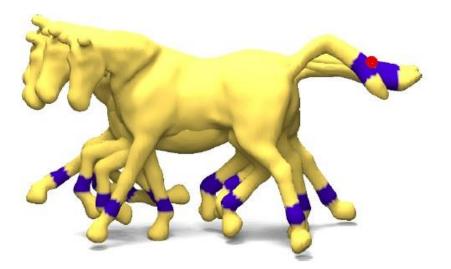
Properties:

- ✓ Efficient calculation
- ✓ Concise
- ✓ Multi-scale
- ✓ Stable
- Invariant under isometric deformations

Special Benefits of the HKS

Comparing features across several shapes: Possible due to invariance under isometric deformations

4 independent datasets (poses) of a horse Marked: Signatures close to signature of red dot



Properties:

- ✓ Efficient calculation
- ✓ Concise
- ✓ Multi-scale
- ✓ Stable
- Invariant under isometric deformations

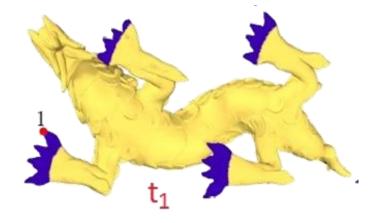
Summary

Effective Shape Matching with the Heat Kernel Signature: $HKS(x,t) = k_t(x,x)$

Models heat diffusion process on a shape Only evaluated on the temporal domain

 \rightarrow Efficient calculation, Concise

Time serves as scaling parameter → Multi-Scale



→ Stable, Invariant under isometric deformations

Thank you for your attention

