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What we will cover today

§ Introduction to visual motion estimation approaches
§ Visual odometry (VO) vs. visual SLAM
§ Overview on VO approaches for monocular, stereo, RGB-D cameras
§ The notions of sparse, dense, and direct

§ Sparse, keypoint-based visual odometry

§ Direct, dense motion estimation
§ Motion representation using the SE(3) Lie algebra
§ Non-linear least squares optimization
§ Direct dense RGB-D odometry
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Part	1:	
Introduction	to	Visual	Odometry
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Computer	Vision	Group,	TUM4Vision-based	Navigation



Visual Motion Estimation a.k.a. 
Visual Odometry

Computer	Vision	Group,	TUM5Vision-based	Navigation



Visual Motion Estimation a.k.a. 
Visual Odometry

Computer	Vision	Group,	TUM6Vision-based	Navigation



Visual Motion Estimation a.k.a. 
Visual Odometry

Computer	Vision	Group,	TUM7Vision-based	Navigation



The Term “Visual Odometry”

§ Odometry: 
§ Greek: „hodos“ – path, „metron“ –

measurement
§ Motion or position estimation from

measurements or controls
§ Typical example: wheel encoders

§ Visual Odometry (VO):
§ 1980-2004: Dominant research by NASA 

JPL for Mars exploration rovers (Spirit and
Opportunity in 2004) 

§ David Nister‘s „Visual Odometry“ paper
from 2004 about keypoint-based methods for
monocular and stereo cameras
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Visual Odometry

§ VO is often used to complement other motion sensors
§ GPS
§ Inertial Measurement Units (IMUs)
§ Wheel odometry
§ etc.

§ Important in GPS-denied environments (indoors, underwater, etc.)

§ Relation to Visual Simultaneous Localization and Mapping (SLAM): 
§ Local (VO) vs. global (VSLAM) consistency
§ VO: 3D reconstruction only at local scale (if at all)
§ VO: Real-time requirements

Computer	Vision	Group,	TUM9Vision-based	Navigation



Sensors for Visual Odometry

§ Monocular:
§ Pros: Low-power, light-weight, low-cost, simple 

to calibrate and use
§ Cons: requires motion parallax and textured

scenes, scale not observable

§ Stereo:
§ Pros: depth without motion, less power than

active structured light
§ Cons: requires textured scenes, accuracy depends

on baseline, requires extrinsic calibration of the
cameras, synchronization of the cameras

§ Active RGB-D sensors:
§ Pros: also work in untextured scenes, similar to

stereo processing
§ Cons: active sensing consumes power, blackbox

depth estimation
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Keypoints, Direct, Sparse, Dense
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§ Sparse: use a small set of selected pixels (keypoints)
§ Dense: use all (valid) pixels

Keypoint-based Direct



Part	2:	
Sparse	Visual	Odometry
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Sparse Keypoint-based Visual Odometry
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R,	t	?

Extract and match
keypoints

Determine relative	
camera pose (R,	t)	
from keypoint matches



Keypoint Extraction
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§ Detection repeatability
§ We want to find the (accurate) 

image of the same 3D point from
different view-points

§ Descriptor distinctiveness
§ We want a descriptor that

achieves (in the ideal case) a 
unique and correct association of
corresponding keypoints



Keypoint Detectors and Descriptors
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§ Keypoint detection and description in images has been extensively studied

§ Nowadays there is plenty of fast and repeatable detectors available, e.g.,
§ Harris corner variants
§ FAST corner variants (e.g. ORB detector)
§ DoG blob variants (SIFT, SURF)
§ Learning-based keypoints

§ Many detectors come with a suitable descriptor, e.g.,
§ ORB (binary pixel comparisons locally around keypoint)
§ SIFT/SURF (grayscale gradient patterns locally around keypoint)



Monocular Keypoint-based Motion Estimation
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§ Monocular case: no depth available at keypoints

§ If we knew the relative pose of the cameras and the 3D 
position of each keypoint match, we could directly
compute to which pixels the keypoints should project in 
each camera image

§ To find the unknown pose and 3D positions: minimize
the reprojection error of all keypoints (optimization
problem)

§ Reprojection error: difference between measured and
expected pixel position of a keypoint

R,	t	?

Uniqueness?
Non-linear	projection?
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Motion from Epipolar Geometry
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§ Alternative: examine epipolar
geometry more closely

§ The rays from each camera to the keypoint and the baseline t are coplanar!

§ The essential matrix captures the relative camera pose
§ Each keypoint match provides an „epipolar constraint“
§ 8 matches suffice to determine (8-point algorithm)
§ In the uncalibrated case, the camera calibration needs to be subsumed into the so-

called fundamental matrix

𝑥̅&7 𝑡×𝑅𝑥̅3 = 0	 ↔ 𝑥̅&7[𝑡]×𝑅𝑥̅3 = 0
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8-Point Algorithm (Longuet-Higgins, 1981)
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§ Find approximation to essential matrix:

§ Construct matrix 𝐴 = (𝑎&,𝑎3,… , 𝑎()7 with 𝑎. = 𝑥̅&,.×𝑥̅3,.. 

§ Apply a singular value decomposition (SVD) on A = US𝑉7 and unstack the 9th column
vector of 𝑉 into 𝐸G

§ Project the approximate 𝐸G into the (normalized) essential space: 
Determine the SVD of 𝐸G = 𝑈	diag(𝜎&,𝜎3, 𝜎N)	𝑉7and replace the singular values 𝜎&, 𝜎3,𝜎N
with 1,1,0 to find 𝐸 = 𝑈	diag(1,1,0)	𝑉7

§ Determine one of the following 4 possible solutions that intersect the points in front of
both cameras:

𝑅 = 𝑈	𝑅O7 ±
𝜋
2 	𝑉7

[𝑡]× = 𝑈	𝑅O ±
𝜋
2 diag 1,1,0 𝑈7

with			𝑅O7 ±
𝜋
2 =

0 ±1 0
∓1 0 0
0 0 1



3D Keypoint-based Motion Estimation
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§ Stereo case: rotation and translation known between the left and right image

§ Match keypoints between left and right image, triangulate their 3D positions

§ To estimate motion between two stereo image pairs:
§ use 8-point algorithm on keypoints in the left images
§ recover scale from triangulated stereo depth

§ Alternatively, since 3D positions of the keypoints known: simpler least-squares
optimization of the reprojection error:
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Triangulation

§ Given: n cameras
Point correspondence

§ Wanted: Corresponding 3D point
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Triangulation

§ Where do we expect to see                                            ?

§ Minimize the residuals
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Triangulation

§ Multiply with denominator gives

Solve for                                   using:
§ Linear least squares with W=1
§ Linear least squares using SVD
§ Non-linear least squares of the residuals (most accurate)
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Robust Keypoint Matching
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§ Keypoint detectors and descriptors not perfect
§ Pose estimation very sensitive to wrong correspondences (especially when using the

8-point algorithm)

§ Idea: try out different combinations of 8 matches until we find a good fit for most of
the overall keypoints

§ Random Sample Consensus (RANSAC) algorithm



Example: Fit a line to 2D data containing outliers

§ Input data is a mixture of
§ Inliers (perturbed by Gaussian noise)
§ Outliers (unknown distribution)

§ Let’s fit a line using least squares…

Robust Estimation
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Example: Fit a line to 2D data containing outliers

§ Input data is a mixture of
§ Inliers (perturbed by Gaussian noise)
§ Outliers (unknown distribution)

§ Least squares fit gives poor results!

Robust Estimation
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RANdom SAmple Consensus (RANSAC)
[Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set     which contains outliers
Algorithm:
1. Randomly select a (minimal) subset 
2. Instantiate the model from it
3. Using this model, classify all data points as 

inliers or outliers
4. Repeat 1-3 for     iterations
5. Select the largest inlier set, and re-estimate the model from all points 

in this set
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Example

§ Step 1: Sample a random subset
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Example

§ Step 2: Fit a model to this subset
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Example

§ Step 3: Classify points as inliers and outliers (e.g., using a threshold 
distance)
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à 10	inliers,	2	outliers



Example

§ Step 4: Repeat steps 1-3 for N iterations
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Iteration	2:
à 5 inliers,	7	outliers



Example

§ Step 4: Repeat steps 1-3 for N iterations
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Iteration	3:
à 2 inliers,	10	outliers



Example

§ Step 5: Select the best model (most inliers), then re-fit model using all 
inliers
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Best	model:
Iteration	1
(10	inliers,	2	outliers)



How Many Iterations Do We Need?

§ For a probability of success             , we need

for subset size         and outlier ratio 
§ E.g., for p=0.99:
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iterations

Required	points
s

Outlier ratio ε

10 % 20 % 30 % 40 % 50 % 60 % 70 %

Line 2 3 5 7 11 17 27 49

Plane 3 4 7 11 19 35 70 169

Essential	matrix 8 9 26 78 272 1177 7025 70188



Summary on RANSAC

§ Efficient algorithm to estimate a model from noisy and outlier-
contaminated data

§ RANSAC is used today very widely
§ Often used in feature matching / visual motion estimation
§ Many improvements/variants (e.g., PROSAC, MLESAC, …)
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Part 2: Lessons Learned

§ How to estimate motion from keypoints from monocular images 
using the 8-point algorithm

§ How to use the 8-point algorithm for stereo and RGB-D
§ How to triangulate keypoint matches given the camera pose
§ How to separate inliers from outliers using RANSAC
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Part	3:	
Direct	Dense	Visual	Odometry
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Problem with Keypoint-based Methods
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§ Not all matrices are transformation matrices: Transformation matrices
have a special structure

§ Translation        has 3 degrees of freedom
§ Rotation         has 3 degrees of freedom

§ They form a group which we call SE(3). The group operator is matrix
multiplication:

§ The operator is associative, but not commutative!
§ There is also an inverse and a neutral element

38

Special Euclidean Group SE(3)
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§ Translation      has 3 degrees of freedom
§ Rotation       has 3 degrees of freedom

§ Different parametrizations of 
§ Direct matrix representation
§ Quaternion / translation
§ Axis,angle / translation
§ Later: Twist coordinates in Lie Algebra se(3) of SE(3)

39

Parametrizations of SE(3)
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Pose Parametrization for Optimization

§ Let’s say we want to optimize a cost function            for the pose in 
some       parametrization

§ We need to set 

which we can tackle using gradient descent (or higher-order methods) 
by making steps on   

§ When we determine the derivative of           , we will require the 
derivative of            for     , which should have no singularities

§ We also update the pose parametrization, which requires a minimal 
representation
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SE(3) Lie Algebra for Representing Motion

§ SE(3) is also a smooth manifold which makes it a Lie group
§ The SE(3) Lie Algebra se(3) provides an elegant way to parametrize poses 

for optimization
§ Its elements                  form the tangent space of SE(3) at its 

identity 
§ The se(3) elements can be interpreted as rotational and translational 

velocities applied for some duration (twist) that explain the infinitesimal 
motion away from the identity transformation
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Lie algebra

Lie group log

exp



Exponential Map of SE(3)

§ The exponential map finds the transformation matrix for a twist:

Computer	Vision	Group,	TUM42Vision-based	Navigation

Lie group

Lie algebra

log

exp



Logarithm Map of SE(3)

§ The logarithm maps twists to transformation matrices:
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Lie group

Lie algebra

log

exp



Optimization with Twist Coordinates

§ How are twists useful in optimization?
§ They provide a minimal representation without singularities close to identity
§ Since SE(3) is a smooth manifold, we can decompose 

in each optimization step into the transformation itself                       and a 
small increment (could be left or right-multiplied)        : 

§ Gradient descent operates on the auxiliary variable
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SE(3) Lie Algebra for Representing Motion

§ C++ implementation: Sophus extension library for Eigen, 
by Hauke Strasdat, https://github.com/strasdat/Sophus

§ Further reading on motion representation using the SE(3) Lie algebra:
§ Yi Ma, Stefano Soatto, Jana Kosecka, Shankar S. Sastry. An Invitation to 

3-D Vision, Chapter 2: http://vision.ucla.edu/MASKS/
§ http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.

pdf
§ http://ethaneade.com/lie.pdf
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Dense Direct Image Alignment

§ If we know pixel depth, we can „simulate“ an RGB-D image from a different view
point

§ Ideally, the warped image is the same like the image taken from that pose:

§ For RGB-D, we have the depth, but want to find the camera motion!

Computer	Vision	Group,	TUM46Vision-based	Navigation



Dense Direct Image Alignment

§ Given a camera motion, we can find and compare corresponding pixels
through projection. 

§ We measure in one image a noisy version of the intensity in the other image:

§ A simple assumption is Gaussian noise, e.g. if the noise only comes from
pixel noise on the chip

§ If we further assume that the measurements are stochastically independent at 
each pixel, we can formulate the joint probability
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Dense Direct Image Alignment

§ Maximum-likelihood estimation problem
§ Optimize negative log-likelihood

§ Product becomes a summation
§ Exponentials disappear
§ Normalizers are independent of the pose

§ This non-linear least squares error function can be efficiently optimized
using standard methods (Gauss-Newton, Levenberg-Marquardt)
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Least Squares Optimization

§ If the residuals would be linear        , i.e.,                            , 
optimization would be simple, has a closed-form solution

§ In this case, the error function and its derivatives are

§ Setting the first derivative to zero yields
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Non-linear Least Squares Optimization

§ In direct image alignment, the residuals are non-linear in
§ Gauss-Newton method, iterate: 

§ Linearize residuals

§ Solve linearized system

Computer	Vision	Group,	TUM50Vision-based	Navigation



Actual Residual Distribution

§ The Gaussian noise assumption is not valid
§ Many outliers (occlusions, motion, etc.)
§ Residuals are distributed with more mass on the larger values
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- Normal	distribution
- Laplace	distribution
- Student-t	distribution

r

p(
r)



Iteratively Reweighted Least Squares

§ Can we change the residual distribution in the least squares optimization?
§ We can reweight the residuals in each iteration to adapt residual distribution
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- Normal	distribution
- Laplace	distribution
- Student-t	distribution

r

w
(r)
r²

E.g.,	for Laplace	distribution:



Huber-Loss

§ Huber-loss „switches“ between normal (locally at mean) and Laplace 
distribution
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Huber-loss for =	1



Linearization of Image Alignment Residuals

§ In our direct image alignment case, the linearized residuals are

with

§ Linearization is only valid for motions that change the projection in a 
small image neighborhood (where the gradient hints into the
direction)
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Coarse-To-Fine

§ Adapt size of the neighborhood from coarse to fine
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Coarse motion

Fine	motion



Covariance of the Pose Estimate

§ Non-linear least squares determines
a Gaussian estimate

§ Due to pose decomposition, we have to change the coordinate frame of the
covariance using the adjoint in SE(3)
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Levenberg-Marquardt

§ Idea: damp Gauss-Newton algorithm

§ More adaptive component-wise damping:

§ Hybrid between Newton method (λ = 0) and gradient descent with 
step size 1/λ (for λ → ∞)

§ Start with e.g. λ = 0.1 and update λ in each iteration
§ decrease λ in case of successful update (decreased error)
§ increase λ in case of unsuccessful update (increased error)
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Part 3: Lessons Learned

§ The SE(3) Lie algebra is an elegant way of motion representation, especially
for gradient-based optimization of motion parameters

§ Non-linear least squares optimization is a versatile tool that can be applied
for direct image alignment

§ Iteratively Reweighted Least Squares allows for overcoming the limitation of
basic least squares on the Gaussian residual distribution/L2 loss on the
residuals

§ Dense RGB-D odometry through direct image alignment can be
implemented in a non-linear least squares framework. 
§ The linear approximation of the residuals requires a coarse-to-fine optimization

scheme
§ Non-linear least squares also provides the pose covariance
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Questions ?
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