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What we will cover today

= [ntroduction to visual motion estimation approaches

= Visual odometry (VO) vs. visual SLAM
= QOverview on VO approaches for monocular, stereo, RGB-D cameras

= The notions of sparse, dense, and direct
= Sparse, keypoint-based visual odometry

= Direct, dense motion estimation

= Motion representation using the SE(3) Lie algebra
= Non-linear least squares optimization
= Direct dense RGB-D odometry
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Part 1:
Introduction to Visual Odometry
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The Term “Visual Odometry”

* (Odometry:
= @Greek: ,,hodos* — path, ,,metron* —
measurement
= Motion or position estimation from
measurements or controls

= Typical example: wheel encoders

= Visual Odometry (VO):
= 1980-2004: Dominant research by NASA
JPL for Mars explorationrovers (Spirit and
Opportunity in 2004)
= David Nister‘s,,Visual Odometry* paper
from 2004 about keypoint-based methods for
monocular and stereo cameras
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Visual Odometry

= VO i1s often used to complement other motion sensors

= GPS
= Inertial Measurement Units (IMUs)

= Wheel odometry
= eftc.

= Important in GPS-denied environments (indoors, underwater, etc.)

= Relation to Visual Simultaneous Localization and Mapping (SLAM):

= Local (VO) vs. global (VSLAM) consistency
= VO: 3D reconstruction only at local scale (if at all)

= VO: Real-time requirements
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Sensors for Visual Odometry

=  Monocular:
= Pros: Low-power, light-weight, low-cost, simple
to calibrate and use

= Cons: requires motion parallax and textured
scenes, scale not observable

= Stereo:
= Pros: depth without motion, less power than - 4
active structured light o B

= Cons: requires textured scenes, accuracy depends
on baseline, requires extrinsic calibration of the
cameras, synchronization of the cameras

= Active RGB-D sensors:

= Pros: also work in untextured scenes, similar to
stereo processing

= (Cons: active sensing consumes power, blackbox
depth estimation
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Keypoints, Direct, Sparse, Dense

Keypoint-based

Direct

Input ' Input
Images Images
i o A ]
Extract & Match
Features
(SIFT/SURF/ ...)
L L <
abstract image to feature observations keep full images (no abstraction)
Track: Track:
min. reprojection error 2. min. photometric error
(point distances) (intensity differences) »
7—1 \;\_. 7—] ’\] T
o Map: | W4 \ Map

est. feature-parameters “~ g
(3D points / normals) —~:, i

est. per-pixel depth
(semi-dense depth map)

Sparse: use a small set of selected pixels (keypoints)

Dense: use all (valid) pixels

Vision-based Navigation

11

Computer Vision Group, TUM



Part 2:
Sparse Visual Odometry
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Sparse Keypoint-based Visual Odometry

Extract and match

TS -
& 1 keypoints

Determine relative
camera pose (R, t)
from keypoint matches
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Keypoint Extraction

= Detection repeatability

=  We want to find the (accurate)
image of the same 3D point from
different view-points

Descriptor distinctiveness

=  We want a descriptor that
achieves (in the ideal case) a
unique and correct association of
corresponding keypoints
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Keypoint Detectors and Descriptors

= Keypoint detection and description in images has been extensively studied

= Nowadays there is plenty of fast and repeatable detectors available, e.g.,
= Harris corner variants
= FAST corner variants (e.g. ORB detector)

= DoG blob variants (SIFT, SURF)
= Learning-based keypoints

= Many detectors come with a suitable descriptor, e.g.,

= ORB (biary pixel comparisons locally around keypoint)
= SIFT/SURF (grayscale gradient patterns locally around keypoint)
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Monocular Keypoint-based Motion Estimation

Monocular case: no depth available at keypoints

= [f we knew the relative pose of the cameras and the 3D
position of each keypoint match, we could directly
compute to which pixels the keypoints should project in
each camera image R t?

<
«-

Cq €2
= To find the unknown pose and 3D positions: minimize
the reprojection error of all keypoints (optimization

problem)

1 2 2
ER,t,xq, .., xy) = NE“Z” — ()|l + |22 — m(Rx; + 0|
i

= Reprojection error: difference between measured and

: . : Uniqueness?
expected pixel position of a keypoint X

Non-linear projection?
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Motion from Epipolar Geometry

Alternative: examine epipolar
geometry more closely

AR

The rays from each camera to the keypoint and the baseline t are coplanar!

Cq

¥I(txRx,)=0 o X[ [t]xRX, =0

The essential matrix  E = [t] R captures the relative camera pose
Each keypoint match provides an ,,epipolar constraint*
8 matches suffice to determine E (8-point algorithm)

In the uncalibrated case, the camera calibration needs to be subsumed into the so-
called fundamental matrix F=KTEK™!
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8-Point Algorithm (Longuet-Higgins, 1981)

* Find approximation to essential matrix:
= Construct matrix 4 = (aq,a,,...,ay)" with a; = %, ;X% ;.

= Apply a singular value decomposition (SVD) on A = USVT and unstack the 9th column
vector of V into E

= Project the approximate E into the (normalized) essential space:

Determine the SVD of E = U diag(oy,0,,03) V' and replace the singular values gy, 05,03
with 1,1,0 to find E = U diag(1,1,0) V7

= Determine one of the following 4 possible solutions that intersect the points in front of
both cameras:

R=UR? iz vT
z( 2) with Rg(ig):<$01 iol g>

T
t], = UR, (iz) diag(1,1,0)U7 0 0 1
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3D Keypoint-based Motion Estimation

= Stereo case: rotation and translation known between the left and right image
= Match keypoints between left and right image, triangulate their 3D positions

= To estimate motion between two stereo image pairs:
= use 8-point algorithm on keypoints in the left images
= recover scale from triangulated stereo depth

= Alternatively, since 3D positions of the keypoints known: simpler least-squares
optimization of the reprojection error:

1
ER,O) ==Y ||lzs; — n®RTx; = RTO)||” + ||25s — mRx; + )|
N Z 2 2
l

Vision-based Navigation 19 Computer Vision Group, TUM



Triangulation

= Given: n cameras {M; = K;(R; t;)}
Point correspondence X0, X1

= Wanted: Corresponding 3D point p
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Triangulation

= Where do we expect to see p=(XY ZW)' ?

my1 X +mqoY +mysZ +myaW . M X +maoY +mos s + mosW
r r ‘ r ?/ - [ e
Mg X + MyoY + Mgl + Mg W T omg X MY + Mgy 4+ mg W

T =

=  Minimize the residuals

o p— 1 . v : 2
p* = argmin E d(x;,%;)
J
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Triangulation

= Multiply with denominator gives

0= (x;m31 —mi1)X + (xjmaz — mi2)Y + (xymaz — mi3)Z + (x;mszqg — mg) W

0 = (yjms1 — ma1)X + (yjmsz — m22)Y + (yjmas — ma3)Z + (yjmss — mag)W

Solve for p = (X Y Z W)using:
= Linear least squares with W=1
= Linear least squares using SVD

* Non-linear least squares of the residuals (most accurate)
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Robust Keypoint Matching

: |

o I i) P W —

= Keypoint detectors and descriptors not perfect

= Pose estimation very sensitive to wrong correspondences (especially when using the
8-point algorithm)

= Idea: try out different combinations of 8 matches until we find a good fit for most of
the overall keypoints

= Random Sample Consensus (RANSAC) algorithm

Vision-based Navigation 23 Computer Vision Group, TUM



Robust Estimation

Example: Fit a line to 2D data containing outliers

A

= Input data 1s a mixture of

= [nliers (perturbed by Gaussian noise)

= Qutliers (unknown distribution)

= Let’s fit a line using least squares...

24
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Robust Estimation

Example: Fit a line to 2D data containing outliers

A

= Input data 1s a mixture of
= [nliers (perturbed by Gaussian noise)
= Qutliers (unknown distribution)

* Least squares fit gives poor results!
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RANdom SAmple Consensus (RANSAC)
[Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set  wltich contains outliers
Algorithm:

1. Randomly select a (minimal) subset

2. Instantiate the model from it

3. Using this model, classify all data points as
inliers or outliers

Repeat 1-3 for /Merations

5. Select the largest inlier set, and re-estimate the model from all points
in this set
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Example

= Step 1: Sample a random subset
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Example

= Step 2: Fit a model to this subset
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Example

= Step 3: Classify points as inliers and outliers (e.g., using a threshold
distance)

= 10 inliers, 2 outliers
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Example

= Step 4: Repeat steps 1-3 for N iterations

° lteration 2:
= Sinliers, 7 outliers
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Example

= Step 4: Repeat steps 1-3 for N iterations

o Iteration 3:
= 2 inliers, 10 outliers
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Example

= Step 5: Select the best model (most inliers), then re-fit model using all
inliers

A
°
Best model:
I[teration 1
(10 inliers, 2 outliers)
— ()
>
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How Many Iterations Do We Need?

= For a probability of success p , we need
B log(1 — p)
© log(1—(1—e))
for subset size s and outlier ratio €
= E.g., for p=0.99:

1terations

Required points Outlier ratioe

S 10% 20% 30% 40% 50% 60% 70%
Line 2 3 5 7 11 17 27 49
Plane 3 4 7 11 19 35 70 169
Essential matrix 8 9 26 78 272 1177 7025 70188
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Summary on RANSAC

= Efficient algorithm to estimate a model from noisy and outlier-
contaminated data

= RANSAC i1s used today very widely
= Often used in feature matching / visual motion estimation
= Many improvements/variants (e.g., PROSAC, MLESAC, ...)
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Part 2: Lessons Learned

= How to estimate motion from keypoints from monocular images
using the 8-point algorithm

= How to use the 8-point algorithm for stereo and RGB-D
= How to triangulate keypoint matches given the camera pose

= How to separate inliers from outliers using RANSAC
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Part 3:
Direct Dense Visual Odometry
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Problem with Keypoint-based Methods
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Special Euclidean Group SE(3)

= Not all matrices are transformation matrices: Transformation matrices
have a special structure

T:(f){ 11:)GSE(3)CR4><4

* Translation t has 3 degrees of freedom
= Rotation R has 3 degrees of freedom

= They form a group which we call SE(3). The group operator 1s matrix
multiplication:

. SE(?)) X SE(S) — SE(3)
A B A
= The operator is associative, but not commutative!
= There 1s also an inverse and a neutral element
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Parametrizations of SE(3)

* Translation thas 3 degrees of freedom
= Rotation Ras 3 degrees of freedom

T:(]é){ 'i)eSE@)cIRa‘lx4

= Different parametrizations 6 of T ((9)
= Direct matrix representation
= (Quaternion / translation
= Axis,angle / translation
= Later: Twist coordinates in Lie Algebra se(3) of SE(3)
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Pose Parametrization for Optimization

= Let’s say we want to optimize a cost function f7(9) for the pose in
some 6 parametrization

= Weneedtoset VyE(0)=0

which we can tackle using gradient descent (or higher-order methods)
by making stepson 0

0 < 0 — AVoE(0)

= When we determine the derivative of £ (), we will require the
derivative of T'(6)for @ , which should have no singularities

= We also update the pose parametrization, which requires a minimal
representation
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SE(3) Lie Algebra for Representing Motion

Lie algebra £ = ( (:: ) c R®
£ € se(3)
w e R’ w

— : v
/Iog VER3

. &3 Vv 4x4
g._(o O)ER

= SE(3) is also a smooth manifold which makes it a Lie group

= The SE(3) Lie Algebra se(3) provides an elegant way to parametrize poses
for optimization

= Itselements & € se(3)rm the tangent space of SE(3) at its
identity I € SE(3)

= The se(3) elements can be interpreted as rotational and translational

velocities applied for some duration (twist) that explain the infinitesimal
motion away from the 1dentity transformation

exp /
Lie group

T € SE(3)

I € SE(3)
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Exponential Map of SE(3)

Lie algebra

£ € se(3)

/ log

exp /

Lie group

T € SE(3)

I € SE(3)

= The exponential map finds the transformation matrix for a twist:
N [ exp(w) Av
- (5) - ( 0 1 )

sinjw| . 1 —cos|w| .y

W] lw|?

exp (W) =1+
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Logarithm Map of SE(3)

Lie algebra

£ € se(3)

/ log

exp /

Lie group

T € SE(3)

I € SE(3)

= The logarithm maps twists to transformation matrices:

log (T) — ( logéR) Aglt )

2  2sin |w]

w| = cos™* (tr (R) - 1) log (R) = ol (R-R")
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Optimization with Twist Coordinates

= How are twists useful in optimization?
= They provide a minimal representation without singularities close to identity

= Since SE(3) is a smooth manifold, we can decompose
in each optimization step into the transformation itself T (E ) and a
small increment (could be left or right-multiplied) 0 €

T(§) := T(§)T(08)

= Gradient descent operates on the auxiliary variable

0 < 0 — Ve E(0E)
/«S\ < log (exp (E) exp (SE))
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SE(3) Lie Algebra for Representing Motion

= (C++ implementation: Sophus extension library for Eigen,
by Hauke Strasdat, https://github.com/strasdat/Sophus

= Further reading on motion representation using the SE(3) Lie algebra:

= Yi Ma, Stefano Soatto, Jana Kosecka, Shankar S. Sastry. An Invitationto
3-D Vision, Chapter 2: http://vision.ucla.edu/MASKS/

= http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D techrep.

pdf
= http://ethaneade.com/lie.pdf
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Dense Direct Image Alignment

= [f we know pixel depth, we can ,,simulate® an RGB-D image from a different view
point
= [deally, the warped image is the same like the image taken from that pose:

Ii(x) = L(r(T(€) Z(x) K X))

= For RGB-D, we have the depth, but want to find the camera motion!
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Dense Direct Image Alignment

= (@Given a camera motion, we can find and compare corresponding pixels
through projection.

=  We measure in one image a noisy version of the intensity in the other image:
11—
I(x) = L(n(T(§)Z(x) K 'X)) + ¢
= A simple assumption is Gaussian noise, €.g. if the noise only comes from
pixel noise on the chip
e ~ N(0,07)

= [fwe further assume that the measurements are stochastically independent at
each pixel, we can formulate the joint probability

p& | I, I2) < p(I1 | &, I2)p(€)
p(& | I, I2) HN ([1(X) — IQ(W(T(S)Z(X)K_li))S090%)

x€e()
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Dense Direct Image Alignment

=  Maximum-likelihood estimation problem
= Optimize negative log-likelihood
= Product becomes a summation

= Exponentials disappear
= Normalizers are independent of the pose

= This non-linear least squares error function can be efficiently optimized
using standard methods (Gauss-Newton, Levenberg-Marquardt)
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Least Squares Optimization

= If the residuals would be linear £ i.e,, r(€) = A€+ Db

optimization would be simple, has a closed-form solution

= In this case, the error function and its derivatives are

B(€) = 5r()"Wr(g
V(€)= Ver(6) Wr(€) = ATWr(¢

V:E(€) = A"WA

= Setting the first derivative to zero yields

VeE(§) = VeE(&o) + VZE(&))(& — &) =0
=26 — VeE(&) VeE (&)
£ =€, — (ATWA) " ATWr(¢,)
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Non-linear Least Squares Optimization

* In direct image alignment, the residuals are non-linear in

=  Gauss-Newton method, iterate:

= Linearize residuals 7€) = (50) + Ver(§)(€ — &)
E(¢) = ( §) Wr(§)
VeE(€) = Vs r(§) Wr(§)
ViE(E) = Ver(€)"WVer (€)

= Solve linearized system
VeE(€) = VeE (&) + VEE(€) (€ — &) =
£ &~ VeE(E) 'VeE(E)
€ &~ (Ver(§)"WVer(€)) ™ Ver(6)" Wr(¢)
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Actual Residual Distribution

- Normal distribution
- Laplace distribution
- Student-t distribution

p(r)

= The Gaussian noise assumptionis not valid
= Many outliers (occlusions, motion, etc.)
= Residuals are distributed with more mass on the larger values
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Iteratively Reweighted Least Squares

10

- Normal distribution
- Laplace distribution
- Student-t distribution

w(r)r?

= (Can we change the residual distribution in the least squares optimization?
= We can reweight the residuals in each iteration to adapt residual distribution

2 E.g., for Laplace distribution:

1 r(x, §)
Bg) =5 w(r(x, N7 w(r(x,€)) = [r(x, &)
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Huber-Loss

* Huber-loss ,,switches* between normal (locally at mean) and Laplace
distribution

2 .
3 Il it |rfl, <9

/r‘ p—
Il 5(“"’“”1 _ %5) otherwise

.............. Huber-loss for 5 =1
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Linearization of Image Alignment Residuals

* In our direct image alignment case, the linearized residuals are

Ver(x,§) = =V L(n(p(x,§))) - Ver(p(x,§))

with p(x, &) = T(€)Z(x)K~'%
r(x, &) = Li(x) — L(r(p(x,£)))

= Linearization is only valid for motions that change the projection in a
small image neighborhood (where the gradient hints into the
direction)
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Coarse-To-Fine

= Adapt size of the neighborhood from coarse to fine

Coarse motion

Fine motion
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Covariance of the Pose Estimate

= Non-linear least squares determines
a Gaussian estimate

p<€ ‘ [1712) — N (Ev Eﬁ) iﬁ
T = (Ver(§)TWVer(€))

= Due to pose decomposition, we have to change the coordinate frame of the
covariance using the adjoint in SE(3)

p | L, L) =N (E, adT(Z)E‘s&adi(E))

Sse = (Vser(6€ = 0,8)"WVser (8¢ = 0,8))

adp = ( f){ [t]ﬁR ) c RO*O
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Levenberg-Marquardt

* Jdea: damp Gauss-Newton algorithm
£ &~ (Ver(§) " WVer(§) + 1) Ver(§) " Wr(g)

= More adaptive component-wise damping;:

€ < f — (VgT(ﬁ)TWVg“(f)
+ L diag(Ver(£)TWVer(£))) " Ver(€)"Wr(€)

= Hybrid between Newton method (A = 0) and gradient descent with
step size 1/A (for A — o0)

= Start with e.g. A = 0.1 and update A in each iteration
= decrease A in case of successful update (decreased error)
" 1ncrease A in case of unsuccessful update (increased error)
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Part 3: Lessons Learned

The SE(3) Lie algebra is an elegant way of motion representation, especially
for gradient-based optimization of motion parameters

= Non-linear least squares optimizationis a versatile tool that can be applied
for direct image alignment

= [teratively Reweighted Least Squares allows for overcoming the limitation of
basic least squares on the Gaussian residual distribution/L2 loss on the
residuals

= Dense RGB-D odometry through direct image alignment can be
implemented in a non-linear least squares framework.

= The linear approximation of the residuals requires a coarse-to-fine optimization
scheme

= Non-linear least squares also provides the pose covariance
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Questions ?
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