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What we will cover today

§ Introduction to vision-based state estimation and control

§ State estimation
§ Bayes Filter
§ Extended Kalman Filter
§ Unscented Kalman Filter

§ Control
§ PID Control
§ Cascaded Control
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What we will cover today

§ Introduction to vision-based state estimation and control

§ State estimation
§ Bayes Filter
§ Extended Kalman Filter
§ Unscented Kalman Filter

§ Feedback Control
§ PID Control
§ Cascaded Control
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The State Estimation Problem

We want to estimate the world state      from
1. Sensor measurements         and
2. Controls (or odometry readings)

Probabilistic filtering:

§ How do we perform inference for the state?
§ How do we model the relationship between these random variables?

7 Computer	Vision	Group,	TUMVision-based	Navigation



Probabilistic Measurement Model

§ Measurements depend on the actual state, but robot sensors only 
provide noisy versions

§ Quantify probability distribution on measurements (given state)

§ Typical model: non-linear function of state and additive noise 

e.g. 

sensor
reading

world
state

measurement
function
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Probabilistic State-Transition Model

§ Robot executes a control not accurately, i.e. the control outcome can 
only be predicted up to some uncertainty

§ Quantify probability on control outcome (given prev. state)

§ Typical model: non-linear function of control and prev. state with 
additive noise

e.g.
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Bayes Filter

§ Given:
§ Stream of measurements and controls:
§ Measurement model
§ State-transition model
§ Prior probability of the system state

§ Wanted:
§ Estimate of the state      of the dynamic system
§ Posterior of the state is also called belief
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Markov Assumption

§ Measurements depend only on current state

§ Current state depends only on prev. state and current control

§ Underlying assumptions
§ Static world
§ Independent noise
§ Perfect model, no approximation errors
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Bayes Filter

For each time step, do
1. Apply motion model

2. Apply sensor model
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Kalman Filter

§ Bayes filter with 
§ continuous states 
§ Gaussian state variable and model noise
§ Linear measurement and state-transition functions
§ Extension to non-linear models (Extended Kalman Filter EKF)

§ Developed in the late 1950’s
§ Kalman filter is very efficient (only requires a few matrix operations 

per time step)
§ Applications range from economics, weather forecasting, satellite 

navigation to robotics and many more
§ Most relevant Bayes filter variant in practice 
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Normal Distribution

§ Multivariate normal distribution

§ Example: 2-dimensional normal distribution
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pdf iso lines
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Properties of Normal Distributions

§ Linear transformation à remains Gaussian

§ Intersection of two Gaussians à remains Gaussian
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Kalman Filter

Estimates the state      of a discrete-time controlled process that is 
governed by the linear stochastic difference equation

and (linear) measurements of the state

with                             and 

Initial belief is Gaussian
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From Bayes Filter to Kalman Filter

For each time step, do
1. Apply state-transition model
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From Bayes Filter to Kalman Filter

For each time step, do
2. Apply measurement model

with 
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Kalman Filter

For each time step, do
1. Apply state-transition model

2. Apply measurement model

with
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For	the	interested	readers:
See	Probabilistic	Robotics	for	
full	derivation	 (Chapter	3)



Kalman Filter

§ Highly efficient: Polynomial in the measurement dimensionality k 
and state dimensionality n:

§ Optimal for linear Gaussian systems!

§ Most robotics systems are nonlinear! 
(i.e. nonlinear measurement and state-transition model)
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Taylor Expansion

§ Solution: Linearize both functions
§ State-transition function

§ Measurement function
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Extended Kalman Filter

For each time step, do
1. Apply state-transition model

with
2. Apply measurement model

with                                                        and

22

For	the	interested	readers:
See	Probabilistic	Robotics	for	
full	derivation	 (Chapter	3)
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Example

§ 2D case
§ State
§ Odometry
§ Measurements      (relative to robot pose)

of visual marker at position
§ Fixed time intervals
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Example

§ State-transition function

§ Derivative of state-transition function
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Example

§ Measurement function

25 Computer	Vision	Group,	TUMVision-based	Navigation



Example
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§ Dead reckoning (no measurements)
§ Large process noise in x+y
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Example
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§ Dead reckoning (no measurements)
§ Large process noise in x+y+yaw
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Example

§ Now with measurements (limited visibility)
§ Assume robot knows correct starting pose
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Example

§ What if the initial pose (x+y) is wrong?

29 Computer	Vision	Group,	TUMVision-based	Navigation



Example

§ What if the initial pose (x+y+yaw) is wrong?
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Example
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§ If we are aware of a bad initial guess, we set the initial covariance to a 
large value (large uncertainty)
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Example
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Linearization via EKF
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Page 4!
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EKF Linearization (1) 
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EKF Linearization (2)  

p(x) has high variance relative to region in which linearization is accurate.  
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Linearization via Unscented Transform (1)

EKF UKF
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Linearization via Unscented Transform (2)

EKF UKF
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Linearization via Unscented Transform (3)

EKF UKF
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Unscented Transform
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matrix
square root

Unscented Transform on SE(3):
C. Hertzberg et al., “Integrating Generic 
Sensor Fusion Algorithms with Sound 
State Representations through 
Encapsulation of Manifolds”,
http://arxiv.org/pdf/1107.1119.pdf
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Cholesky Decomposition
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§ Symmetric positive definite matrices (such as covariance) can be 
factored into

using the Cholesky decomposition.

§ The matrix square root is defined as
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Unscented Kalman Filter – Prediction Step
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Unscented Kalman Filter – Correction Step
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Unscented Kalman Filter – Correction Step

Computer	Vision	Group,	TUMVision-based	Navigation



42

EKF vs UKF

Computer	Vision	Group,	TUMVision-based	Navigation

37 

UKF vs. EKF 

Courtesy: E.A. Wan and R. van der Merwe 



UKF on SE3

§ Easy to extend for manifolds:

§ Plus operator (expmap on SE3):

§ Minus operator (logmap on SE3):

§ Works with small uncertainty 
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Figure 1: Mapping a local neighborhood in the state space
(here: on the unit sphere S2) into Rn (here: the plane) al-
lows for the use of standard sensor fusion algorithms with-
out explicitly encoding the global topological structure.

gularities, i.e. a situation analogous to the well-
known gimbal lock problem in gimbaled INS [13]
can occur where very large changes in the parame-
terization are required to represent small changes
in the state space. Workarounds for this exist that
try to avoid these parts of the state space, as was
most prominently done in the guidance system of
the Apollo Lunar Module [22], or switch between
alternative orderings of the parameterization each
of which exhibit singularities in di↵erent areas of
the state space. The second alternative is to over-
parameterize states with a non-minimal represen-
tation such as unit quaternions or rotation matri-
ces which are treated as R4 or R3⇥3 respectively
and re-normalized as needed [45, 30]. This has
other disadvantages such as redundant parame-
ters or degenerated, non-normalized variables.

Both approaches require representation-specific
modifications of the sensor fusion algorithm and
tightly couple the state representation and the
sensor fusion algorithm, which is then no longer
a generic black box but needs to be adjusted for
every new state representation.

Our approach is based on the observation that
sensor fusion algorithms employ operations which
are inherently local, i.e. they compare and mod-
ify state variables in a local neighborhood around
some reference. We thus arrive at a generic solu-
tion that bridges the gap between the two goals
above by viewing the state space as a mani-
fold. Informally speaking, every point of a mani-

fold has a neighborhood that can be mapped bi-
directionally to Rn. This enables us to use an
arbitrary manifold S as the state representation
while the sensor fusion algorithm only sees a lo-
cally mapped part of S in Rn at any point in time.
For the unit sphere S2 this is illustrated in fig-
ure 1.
We propose to implement the mapping by

means of two encapsulation operators � (“box-
plus”) and � (“boxminus”) where

� : S ⇥ Rn
! S, (1)

� : S ⇥ S ! Rn. (2)

Here, � takes a manifold state and a small change
expressed in the mapped local neighborhood in
Rn and applies this change to the state to yield
a new, modified state. Conversely, � determines
the mapped di↵erence between two states.
The encapsulation operators capture an impor-

tant duality: The generic sensor fusion algorithm
uses � and � in place of the corresponding vector
operations � and + to compare and to modify
states, respectively – based on flattened pertur-
bation vectors – and otherwise treats the state
space as a black box. Problem-specific code such
as measurement models, on the other hand, can
work inside the black box, and use the most nat-
ural representation for the state space at hand.
The operators � and � translate between these
alternative views. We will later show how this
can be modeled in an implementation framework
such that manifold representations (with match-
ing operators) even of very sophisticated com-
pound states can be generated automatically from
a set of manifold primitives (in our C++ imple-
mentation currently Rn, SO(2), SO(3), and S2).
This paper extends course material [11] and

several master’s theses [25, 5, 16, 43]. It starts
with a discussion of related work in Section 2.
Section 3 then introduces the �-method and 3D
orientations as the most important application,
and Section 4 lays out how least squares opti-
mization and Kalman filtering can be modified
to operate on these so-called �-manifolds. Sec-
tion 5 introduces the aforementioned software
toolkit, and Section 6 shows practical experi-
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here that we require neither x� � nor y� x to be
smooth in x. Indeed it is sometimes impossible
for these expressions to be even continuous in x
for all x (see Appendix B.5). Axiom (11d) allows
to define a metric and is discussed later.
Returning to the INS example, we can now es-

sentially keep the state model as the state repre-
sentation (Figure 2, Step 2b):

R3

⇥ SO(3)⇥ R3

! R3

⇥ SO(3)⇤ ⇥ R3,

where SO(3)⇤ refers to any mathematically sound
(“lossless”) representation of SO(3) expressed as
a set of numbers to enable a computer to pro-
cess it. Commonly used examples would be
quaternions (R4 with unit constraints) or ro-
tation matrices (R3⇥3 with orthonormality con-
straints). Additionally, we need to define match-
ing representation-specific � and � operators
which replace the static, lossy translation of the
state model into an Rn state representation that
we saw in the standard approach above with an
on-demand, lossless mapping of a manifold state
representation into Rn in our approach.
In the INS example, � would simply perform

vector-arithmetic on the Rn components and mul-
tiply a small, minimally parameterized rotation
into the SO(3)⇤ component (details follow soon).

3.4. Probability Distributions on �-Manifolds

So far we have developed a new way to rep-
resent states – as compound manifolds – and a
method that allows generic sensor fusion algo-
rithms to work with them – the encapsulation op-
erators �/�. Both together form a �-manifold.
However, sensor fusion algorithms rely on the use
of probability distributions to represent uncertain
and noisy sensor data. Thus, we will now define
probability distributions on �-manifolds.
The general idea is to use a manifold element

as the mean µ which defines a reference point.
A multivariate probability distribution which is
well-defined on Rn is then lifted into the manifold
by mapping it into the neighborhood around µ 2

S via �. That is, for X : ⌦ ! Rn and µ 2 S

(with dimS = n), we can define Y : ⌦ ! S as
Y := µ � X, with probability distribution given

by
p(Y = y) = p(µ�X = y) (12)

In particular, we extend the notion of a Gaussian
distribution to �-manifolds by

N (µ,⌃) := µ�N (0,⌃), (13)

where µ 2 S is an element of the �-manifold but
⌃ 2 Rn⇥n just a matrix as for regular Gaussians
(App. A.9).

3.5. Mean and Covariance on �-Manifolds

Defining the expected value on a manifold is
slightly more involved than one might assume:
we would, of course, expect that EX 2 S for
X : ⌦ ! S, which however would fail for a naive
definition such as

EX
?

=

Z

S
x · p(X = x)dx. (14)

Instead, we need a definition that is equivalent
to the definition on Rn and well defined for �-
manifolds. Therefore, we define the expected
value as the value minimizing the expected mean
squared error:

EX = argmin
x2S

E(kX � xk2) (15)

This also implies the implicit definition

E(X � EX) = 0, (16)

as we will prove in Appendix A.9.
One method to compute this value is to start

with an initial guess µ
0

and iterate [24]:

µk+1

= µk � E(X � µk) (17)

EX = lim
k!1

µk. (18)

Care must be taken that µ
0

is su�ciently close
to the true expected value. In practice, however,
this is usually not a problem as sensor fusion algo-
rithms typically modify probability distributions
only slightly at each time step such that the pre-
vious mean can be chosen as µ

0

.
Also closed form solutions exist for some man-

ifolds – most trivially for Rn. For rotation ma-
trices, Markley et al. [31] give a definition similar
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Abstract

Common estimation algorithms, such as least squares estimation or the Kalman filter, operate on a
state in a state space S that is represented as a real-valued vector. However, for many quantities, most
notably orientations in 3D, S is not a vector space, but a so-called manifold, i.e. it behaves like a vector
space locally but has a more complex global topological structure. For integrating these quantities,
several ad-hoc approaches have been proposed.
Here, we present a principled solution to this problem where the structure of the manifold S is

encapsulated by two operators, state displacement � : S ⇥ Rn
! S and its inverse � : S ⇥ S ! Rn.

These operators provide a local vector-space view � 7! x�� around a given state x. Generic estimation
algorithms can then work on the manifold S mainly by replacing +/� with�/� where appropriate. We
analyze these operators axiomatically, and demonstrate their use in least-squares estimation and the
Unscented Kalman Filter. Moreover, we exploit the idea of encapsulation from a software engineering
perspective in the Manifold Toolkit, where the �/� operators mediate between a “flat-vector” view
for the generic algorithm and a “named-members” view for the problem specific functions.
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boxplus-method, Manifold Toolkit
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1. Introduction

Sensor fusion is the process of combining infor-
mation obtained from a variety of di↵erent sensors
into a joint belief over the system state. In the de-
sign of a sensor fusion system, a key engineering
task lies in finding a state representation that (a)
adequately describes the relevant aspects of real-
ity and is (b) compatible with the sensor fusion
algorithm in the sense that the latter yields mean-
ingful or even optimal results when operating on
the state representation.

Email address: chtz@informatik.uni-bremen.de

(Christoph Hertzberg)

Satisfying both these goals at the same time
has been a long-standing challenge. Standard sen-
sor fusion algorithms typically operate on real
valued vector state representations (Rn) while
mathematically sound representations often form
more complex, non-Euclidean topological spaces.
A very common example of this comes up, e.g.
within the context of inertial navigation systems
(INS) where a part of the state space is SO(3),
the group of orientations in R3. To estimate vari-
ables in SO(3), there are generally two di↵erent
approaches. The first uses a parameterization
of minimal dimension, i.e. with three parameters
(e.g. Euler angles), and operates on the param-
eters like on R3. This parameterization has sin-
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into a joint belief over the system state. In the de-
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task lies in finding a state representation that (a)
adequately describes the relevant aspects of real-
ity and is (b) compatible with the sensor fusion
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ingful or even optimal results when operating on
the state representation.
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more complex, non-Euclidean topological spaces.
A very common example of this comes up, e.g.
within the context of inertial navigation systems
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C. Hertzberg et al., “Integrating Generic 
Sensor Fusion Algorithms with Sound 
State Representations through 
Encapsulation of Manifolds”,
http://arxiv.org/pdf/1107.1119.pdf



Summary: State Estimation

§ Probabilistic state estimation
§ Uncertainty in measurement and state-transition
§ Bayes filter

§ Kalman filters 
§ Linear KF for continuous Gaussian state variables and Gaussian model 

noise
§ Linear KF is optimal (if model is valid)
§ Extended KF: allow for non-linear measurement and state-transition 

models
§ Unscented KF: improve on linearization in EKF through unscented 

transform
§ Efficient filtering techniques
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What we will cover today

§ Introduction to vision-based state estimation and control

§ State estimation
§ Bayes Filter
§ Extended Kalman Filter
§ Unscented Kalman Filter

§ Feedback Control
§ PID Control
§ Cascaded Control
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Feedback Control

§ Given:
§ Goal state
§ Measured state (feedback)

§ Wanted:
§ Control signal      to reach goal state

§ How to compute the control signal?
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Feedback Control - Generic Idea
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Desired	
value
35°
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Feedback Control - Generic Idea
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Plant	(Regelstrecke)

Desired	
value
35°

Controller	 (Regler)
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Feedback Control - Generic Idea
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Plant	(Regelstrecke)

Desired	
value
35°

How	hot	is	it?
Measured	
temperature

25°

35°

45°

Sensor

Controller	 (Regler)
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Feedback Control - Generic Idea
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Plant	(Regelstrecke)

Desired	
value
35°

How	hot	is	it?
Measured	
temperature

25°

35°

45°

Sensor

Controller	 (Regler)

25°

35°

45°

Error

How	can	we	correct?

Turn	hotter (not	colder)
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Feedback Control - Example
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Controller Plant

Measurement
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Measurement Noise

§ What effect has noise in the measurements?

§ Poor performance for K=1
§ How can we fix this?
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Proper Control with Measurement Noise

§ Lower the gain… (K=0.15)
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What do High Gains do?

§ High gains are always problematic (K=2.15)
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What happens if sign is messed up?

§ Check K=-0.5
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Saturation

§ In practice, often the set of admissible controls u is bounded
§ This is called (control) saturation
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Measurement

Block Diagram
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Controller
–

Plant
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Delays

§ In practice most systems have delays
§ Can lead to overshoots/oscillations/de-stabilization

§ One solution: lower gains (why is this bad?)
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§ What is the total dead time of this system?

Measurement

Delays
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Controller
–

Plant

100ms	delay
in	water	pipe

50ms	delay
in	sensing
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§ What is the total dead time of this system?

§ Can we distinguish delays in the measurement from delays in 
actuation?

Measurement

Delays
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Controller
–

Plant

100ms	delay
in	water	pipe

50ms	delay
in	sensing
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§ What is the total dead time of this system?

§ Can we distinguish delays in the measurement from delays in 
actuation? No!

Delays

61

Controller
–

Plant	(and	
measurement)
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Localization Position
Control

Robot
Next	

waypoint

Position Control
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Sensors Actuators

Physical	
World

forces
torques

position
velocity

acceleration

Kinematics
Dynamics
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Rigid Body Kinematics

§ Consider a rigid body
§ Free floating in 1D space, no gravity
§ In each time instant, we can apply a force F
§ Results in acceleration 
§ Desired position
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P Control

§ What happens for this control law?

§ This is called proportional control
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P Control

§ What happens for this control law?

§ This is called proportional control
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PD Control

§ What happens for this control law?

§ Proportional-Derivative control
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PD Control

§ What happens for this control law?

§ What if we set higher gains? 
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PD Control

§ What happens for this control law?

§ What if we set lower gains? 
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PD Control

§ What happens when we add gravity?

69 Computer	Vision	Group,	TUMVision-based	Navigation



Gravity compensation

§ Add as an additional term in the control law

§ Any known (inverse) dynamics can be included
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PD Control

§ What happens when we have systematic errors? (control/sensor noise 
with non-zero mean)

§ Example: unbalanced quadrocopter, wind, …
§ Does the robot ever reach its desired location?
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add	example	plot
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PID Control

§ Idea: Estimate the system error (bias) by integrating the error

§ Proportional+Derivative+Integral Control
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add	example	plot
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PID Control

§ Idea: Estimate the system error (bias) by integrating the error

§ Proportional+Derivative+Integral Control
§ For steady state systems, this can be reasonable
§ Otherwise, it may create havoc or even disaster (wind-up effect)
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Example: Wind-up effect

§ Quadrocopter gets stuck in a tree à does not reach steady state
§ What is the effect on the I-term?
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How to Choose the Coefficients?

§ Gains too large: overshooting, oscillations
§ Gains too small: long time to converge
§ Heuristic methods exist
§ In practice, often tuned manually
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De-coupled Control

§ So far, we considered only single-input, single-output systems (SISO)
§ Real systems have multiple inputs + outputs
§ MIMO (multiple-input, multiple-output)
§ In practice, control is often de-coupled
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Controller	1

Controller	2
Plant

Computer	Vision	Group,	TUMVision-based	Navigation



Localization

Robot

Cascaded Control
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Sensors Actuators

Physical	
World

Forces
Torques

Position
Velocity

Acceleration

Kinematics
Dynamics

Position	Control

Trajectory

Attitude	Estimation Attitude	Control

RPM	Estimation Motor	Speed	Control 10	.000	
RPM

1	KHz

10	Hz

0.1	Hz
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Assumptions of Cascaded Control

§ Dynamics of inner loops is so fast that it is not visible from outer 
loops

§ Dynamics of outer loops is so slow that it appears as static to the 
inner loops
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Cascaded control
§ Inner loop runs on embedded PC and stabilizes flight
§ Outer loop runs externally and implements position control

Example: Ardrone
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Inner	loop PlantOuter	loop

Ardrone (=seen	as	the	plant	by	the	outer	loop)Laptop

wireless,	approx.	15Hz

onboard,	 1000Hz
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Ardrone: Inner Control Loop

§ Plant input: motor torques

§ Plant output: roll, pitch, yaw rate, z velocity
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attitude
(measured	using	gyro	+	

accelerometer)

altitude
(measured	using	ultrasonic
distance	sensor	+	attitude)
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Ardrone: Inner Control Loop

§ Plant input: motor torques

§ Plant output: roll, pitch, yaw rate, z velocity
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Inner	loop Plant

Ardrone (=seen	as	the	plant	by	the	outer	loop)

onboard,	 1000Hz
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Ardrone: Outer Control Loop

§ Outer loop sees inner loop as a plant (black box)
§ Plant input: roll, pitch, yaw rate, z velocity

§ Plant output: 
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Inner	loop PlantOuter	loop

Ardrone (=seen	as	the	plant	by	the	outer	loop)Laptop

wireless,	approx.	15Hz

onboard,	 1000Hz
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Mechanical Equivalent

§ PD Control is equivalent to adding spring-dampers between the 
desired values and the current position
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Advanced Control Techniques

What other control techniques do exist?
§ Adaptive control
§ Robust control
§ Optimal control
§ Linear-quadratic regulator (LQR)
§ Reinforcement learning
§ Inverse reinforcement learning
§ ... and many more

84 Computer	Vision	Group,	TUMVision-based	Navigation



Summary: Feedback Control

PID control is the most used control technique in practice
§ P control à simple proportional control, often enough
§ PI control à can compensate for bias (e.g., wind)
§ PD control à can be used to reduce overshoot (e.g., when 

acceleration is controlled)
§ PID control à all of the above

85 Computer	Vision	Group,	TUMVision-based	Navigation



Lessons Learned Today

§ Probabilistic state estimation techniques
§ Linear Kalman Filter, Extended KF, Unscented KF
§ Efficient filtering techniques, well suited for onboard processing

§ How to control a system using PID controllers
§ Intuitive control laws
§ Easy to implement
§ Can be tricky to optimize parameters

§ System simplifications: Decoupled and cascaded control
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Questions ?
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