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What we will cover today

= [ntroduction to vision-based state estimation and control

= State estimation
= Bayes Filter
= Extended Kalman Filter
= Unscented Kalman Filter

= (Control

= PID Control
= (Cascaded Control
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Models, State Estimation and Control

Sensor Belief / Motion
Model State Estimate Model

Perception Execution

Sensing
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The State Estimation Problem

We want to estimate the world state L+ from
1. Sensor measurements 27.; and
2. Controls (or odometry readings) 1.

Probabilistic filtering: p(xy | ury, 21:4)

= How do we perform inference for the state?
= How do we model the relationship between these random variables?
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Probabilistic Measurement Model

= Measurements depend on the actual state, but robot sensors only
provide noisy versions

= Quantify probability distribution on measurements (given state)

p(zt | z¢)

= Typical model: non-linear function of state and additive noise

2y = h(th) +0¢ e.g. 6y ~ N (0, R)
7 |
sensor world

reading state

measurement
function
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Probabilistic State-Transition Model

= Robot executes a control not accurately, 1.e. the control outcome can
only be predicted up to some uncertainty

= Quantify probability on control outcome (given prev. state)

p(l’t ‘ LTt—1, Ut)

= Typical model: non-linear function of control and prev. state with
additive noise

state-transition executed
function control

v \
Ty = g(Ti_1,u) + € e.g e ~ N (0,Q)
1 1

current state previous
state
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Bayes Filter

= Given:
= Stream of measurements and controls: 21+ Ul
= Measurement model p(zt ‘ SCt)
= State-transition model p(:Et ‘ Ti 1, Ut)
= Prior probability of the system state p(xo)

= Wanted:
= Estimate of the state L+ of the dynamic system

= Posterior of the state is also called belief

Bel (th) — p(ajt ’ Uq:¢, Zl:t)
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Markov Assumption

= Measurements depend only on current state
p(2¢ | Tows 2101, Uree) = P(2¢ | ¢)
= Current state depends only on prev. state and current control

p(xy | Tow, 210, Ur) = Py | X1, uy)

= Underlying assumptions

= Static world
= Independent noise

= Perfect model, no approximation errors
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Bayes Filter

For each time step, do
1.  Apply motion model

Bel (z;) = / p(xy | xe_1,us) Bel (x4-1) dxy_4

2.  Apply sensor model
Bel (z;) = np(z | x.) Bel (z;)
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Kalman Filter

= Bayes filter with

= continuous states
= aussian state variable and model noise
= [.inear measurement and state-transition functions

= Extension to non-linear models (Extended Kalman Filter EKF)
= Developed in the late 1950°s

= Kalman filter 1s very efficient (only requires a few matrix operations
per time step)

= Applications range from economics, weather forecasting, satellite
navigation to robotics and many more

= Most relevant Bayes filter variant in practice
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Normal Distribution

=  Multivariate normal distribution
X ~N(p,X)
p(x) = N(x; 1, X)

o 1 1 Ty—1
— (271_)(1/2 ‘2‘1/2 CXPp (_é(x_”’) 2 (X_ll'))

= Example: 2-dimensional normal distribution

iso lines
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Properties of Normal Distributions

= [inear transformation = remains Gaussian
X NN(,LL,Z),YNAX—I—B
=Y ~ N(Au+ B, ATA")

= Intersection of two Gaussians =2 remains Gaussian
Xl ~ N(/J/lv Zl): X2 ~ N(,“’Q) zQ)

9 N 2 1 )

= p(X, Xo) =N (
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Kalman Filter

Estimates the state '+ of a discrete-time controlled process that 1s
governed by the linear stochastic difference equation

x; = Axy_1 + Buy + ¢
and (linear) measurements of the state

Zt — C.’Lt _'_(Sf

with §; ~ N(0, R) and ¢ ~ N(0,Q)

Initial belief 1s Gaussian Bel(a’:o) =N (05 o, 20)
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From Bayes Filter to Kalman Filter

For each time step, do
1. Apply state-transition model

@(mt):/g(x”xt_l,utl 1361(:1315_12 dzy_q

— —

N (e A1 +Bug,Q) N (z—15p06—1,5¢—1)

= N (wy; jig, 3¢)
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From Bayes Filter to Kalman Filter

For each time step, do
2. Apply measurement model

Vo

Bel(z¢) = n p(z | x;) Bel(x l
N(z:CoreoR) N i

= N (w4 fuu + Ki(2 — Cp), (I — KC)Y)
:N(xhlu’hzf)

with K, = 5,07 (C5,C7 + R)™!
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Kalman Filter

For each time step, do For the interested readers:
See Probabilistic Robotics for

1. Apply state-transition model full derivation (Chapter 3)

i = Apy_1 + Buy
it —_ AZAT + Q
2. Apply measurement model

e = g + Ki(2 — Cliy)
Et — (] — KfC)if

with B _
K, =%,CT(CECT + R)™!
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Kalman Filter

= Highly efficient: Polynomial in the measurement dimensionality &
and state dimensionality #:

O(kQ..37() + n?)
= Optimal for linear Gaussian systems!

= Most robotics systems are nonlinear!
(1.e. nonlinear measurement and state-transition model)
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Taylor Expansion

=  Solution: Linearize both functions

= State-transition function

Og(pee—1,ut)
aﬂft—l

g(l't—h Ut) ~ Q(M—l, Ut) =+ (iUt—1 — Mt—1)

= g(pe—1,ut) + Ge(we-1 — pre—1)

= Measurement function

Oh( i
h(zy) =~ h(fi) + 0(/ ) (2 — )
Lt

= h(fiy) + Hy(xy — )
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Extended Kalman Filter

) For the interested readers:
For each time step, do See Probabilistic Robotics for

1. Apply state-transition model full derivation (Chapter 3)

e = g(fhe—1, u)

= GtEGtT + ¢  with G, = 0g(pi-1, ur)

041
2.  Apply measurement model
e = fig + Kiy(ze — h(jae))
Zt — (I - Kfo)Ef
- S T s T -1 Oh(fi)
with Kf = Zth (HfEth -+ R) and H[ = 0
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Example

= 2D case
-
= State X = (:1: Y c/*)
L NT
= Odometry u= (;;z; U (/)
= Measurements z = (z, 2, zg)T (relative to robot pose)
of visual marker at position 1= (I, [, )

= Fixed time intervals At
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Example

= State-transition function
r + (cos()x — sin(Y)y) At
g(x,u) = | y+ (sin(¢)& + cos(v)y) At
W+ AL

=  Derivative of state-transition function

1 0 (—sin(y)t — cos(v)y)At
0g(x, | .
= 9(x,u) 1 (cos(y)x + sin(y)y) At

0 1

G Ox 8
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Example

= Measurement function

l, —
h(x) = ( R(y)" 0 ) ly —y
0 L arctan ( y) —

Ih(x) R(¥)" 0 -

H=""2 vy, ( ) ly =y
X 0 : arctan (;z_y) — )

l, —x

+(RW)T O)vx ly =y
0 ! arctan (Z’_y) — )
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Example

= Dead reckoning (no measurements)

= Large process noise in x+y

15

10

5|

o @

-5 L
-5 0
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Example

= Dead reckoning (no measurements)

= Large process noise in x+y+yaw

15
10 - -
5 - 2
0} C) ‘
5 1 | |

-5 0 5 10 15
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Example

= Now with measurements (limited visibility)

= Assume robot knows correct starting pose

Vision-based Navigation
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Example

= What if the mitial pose (x+y) 1s wrong?

15
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Example

= What if the initial pose (x+y+yaw) is wrong?

Vision-based Navigation
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Example

= [f we are aware of a bad 1nitial guess, we set the initial covariance to a
large value (large uncertainty)

15 I I
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Example

15 I i I

10 =

-5 0 5 10 15
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Linearization via EKF

6 6
py) — Function g(x)
— Gaussian of p{y) — Taylor approx.
4 )| — EFK Gaussian 4 = Meanp
O o
2
£
0 T 0
-2 -2
e —— -4 -
0 020406 0.8 0 0.5 1
& pe)
= Meanp
247
=
2|
0 +
n nR 1
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Linearization via Unscented Transform (1)

6 6
Py py)
— Gaussian of p{y) — Gaussian of p(y)
4 || — EFK Gaussian 4 }| — UKF Gaussian

-4

-4 N N
0 020406 0.8 0 020406 08

EKF UKF
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— Function gix)
+= Sigma-points
© uisigma points)

0.5
pix)
= Meanp
L 3 )
AR 1
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Linearization via Unscented Transform (2)

6

Py
— Gaussian of p(y)

4 | — EFK Gaussian

2
11

0

-2

-4 L

0 0.5

EKF
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0

35

— Function gix)
+= Sigma-points
© uisigma points)
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Linearization via Unscented Transform (3)

6 6 6
Py ply) — Function gix)
— Gaussian of p(y) — Gaussian of p(y) &= Sigma-points
4 || — EFK Gaussian 4 | — UKF Gaussian 4 O uisigma points)

=g
N[

Y

EKF UKF 20 + Ve

Py

10
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Unscented Transform

Sigma points Weights
matrix y y
x' =u square root wo = w' = +(1-a’ +pB)
/ n+A n+A
i i i 1 .
X =/,¢i(1/(n+/1)2)i wWo=Ww, = — fori=1,....2n
2(n+A)
Pass sigma points through nonlinear function
i i
v =g(x)
Recover mean and covariance Unscented Transform on SE(3):
2n C. Hertzberg et al., “Integrating Generic
u'= 2 w ' Sensor Fusion Algorithms with Sound
i= State Representations through
2n _ Encapsulation of Manifolds”,
3= 2 w @' - @' - u)’ http:/arxiv.org/pdf/1107. 1119.pdf
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Cholesky Decomposition

* Symmetric positive definite matrices (such as covariance) can be
factored into

> =LLY

using the Cholesky decomposition.

* The matrix square root is defined as

VY =1L
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Unscented Kalman Filter — Prediction Step

1: Unscented _Kalman filter(u;—1,>: 1, us, 2¢):

X1 = (fe—1 fi—1 + Y/ 2—1 pi—1 — Y/ 2t—1)

XS = g(ut, Xt—l)
2n
1=0

2n
5: Se=> wil(X, D) (% — )T+ Ry
1=0
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Unscented Kalman Filter — Correction Step

6: Xo= (e e+ yVE i — vV )
7: Zt = h(/?t)
2n
8: 2 = Z wiﬁzt[z]
9: Z w2 - 2 (2 - 2T + Q
10: Zw X[Z — [it) (Z[Z] )t
11: K;= z”? ? S !
12: pe = e + Ky (20 — 24)
13: X =-K S; K
14: return iy, 2¢
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Unscented Kalman Filter — Correction Step

6: Xo= (e e+ yVE i — vV )
7: Zt = h(/?t)
2n
8: 2 = Z wiﬁzt[z]
9: Z w2 - 2 (2 - 2T + Q
10: Zw X[Z — [it) (Z[Z] )t
11: K;= z”? ? S !
12: pe = e + Ky (20 — 24)
13: X =-K S; K
14: return iy, 2¢
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EKF vs UKF

Actual (sampling) Linearized (EKF) uT

. ';' iy : sigma pomts

covariance
mean
|
y =f(x Y =f£(X)
|
A P ATP_A
y = f(x) Y weighted sample mean
l and covariance
) . }
(X) transformed
— ‘ 5|gma points
¢
«A[ true covariance b
N UT mean
' ""“.' A.TP_,-A.

uT covanance

Courtesy: E.A. Wan and R. van der Merwe
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UKF on SE3

= Easy to extend for manifolds:
N, X) == pEN(0,2),

= Plus operator (expmap on SE3):

S X R* — S
= Minus operator (logmap on SE3):
S xS — R™

Unscented Transform on SE(3):

C. Hertzberg et al., “Integrating Generic
Sensor Fusion Algorithms with Sound
State Representations through

Encapsulation of Manifolds”,
http://arxiv.org/pdf/1107.1119.pdf

= Works with small uncertainty
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Summary: State Estimation

= Probabilistic state estimation

= Uncertainty in measurement and state-transition
= Bayes filter

= Kalman filters

= [inear KF for continuous Gaussian state variables and Gaussian model
noise

= Linear KF 1s optimal (if model 1s valid)

= Extended KF: allow for non-linear measurement and state-transition
models

= Unscented KF: improve on linearization in EKF through unscented
transform

= Efficient filtering techniques
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What we will cover today

= [ntroduction to vision-based state estimation and control

= State estimation
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Feedback Control

= (iven:
= Goal state Ldes
= Measured state (feedback) 2

= Wanted:

= Control signal & to reach goal state

= How to compute the control signal?
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Feedback Control - Generic Idea

=)

Desired
value
35°

Vision-based Navigation
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Feedback Control - Generic Idea

Controller (Regler) Plant (Regelstrecke)

=) Iy

Desired
value
35°
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Feedback Control - Generic Idea

=)

Desired
value
35°

Controller (Regler)

Iy

Sensor
ﬁ_— 45°
— 35°
Measured C
temperature
r 250

Vision-based Navigation
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How hot is it?
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Feedback Control - Generic Idea

Controller (Regler)

45°

How can we correct?

—  35°
» Error -I: L
. Turn hotter (not colder)
Desired 750
value
35°
Sensor
ﬁ_— 45°
— 35°
Measured C
temperature
} 250
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How hot is it?
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Feedback Control - Example

Ldes —>

Controller

U = K(xdes o Z) T

Ty = Tp_1 + Ut + €

Plant

L Measurement

€<——
. 36
o 34 - -
=2
o 32 o
—
2 30 —
o
v 28 — Temperature x —
£ L Observation z |
S 26 Desi
esired value Xges
24 | | |
0 5 10 15 20
Time [s]

10 T
- Control u
Lo 8 m
o
g6 .
g a4t i
s
(@] 2 [— —

0 !

0 5 10 15 20
Time sl
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Measurement Noise

= What effect has noise in the measurements?

38
36 —
34 —
32

30
28 - Temperature x
Observation z

26 Desired value Xges 7
24 | | |

[deg]

Temperature

=
w

Control u

Control [deg/s]
=
o w o
I [ I
g

-
'
wv
o
v -
=L
o
|l
w
N
o

Time Isl

How can we fix this?
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Proper Control with Measurement Noise

= Lower the gain... (K=0.15)

36

28 - Temperature x
Observation z
1 Desired value Xges

Temperature [deg]

24 | | 1 |

0 10 20 30 40 50

Time [s]
2 T

Control u

Control [deg/s]

-0.5 | 1 | | |

0 10 20 30 40 50

Time Is]
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What do High Gains do?

= High gains are always problematic (K=2.15)

150

100

50

Temperature [deg]

-50 '

|

'emperatur x
Observation
Desired value Xges

150

10
Time [s]

15

100
50 —

-50 —
-100
-150 '

Control [deg/s]
=}
I

T

|

Control u
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What happens if sign is messed up?

= Check K=-0.5

50

-50
-100
-150
-200
-250

T T T 177

Temperature [deg]

Temperature x
Observation z

Desired valle Xyeq |

-300 ‘
10

o
(%]

Time [s]

15

20

0 |

-50 —

-100

Control u

-150

Control [deg/s]

-200 ! !
0 5 10

Time [sl
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Saturation

= In practice, often the set of admissible controls u is bounded

= This is called (control) saturation

W oW w w
o N B O
T

m
N
o
1T T 1

perature [deg]

o 28

Temperature x
Observation z
| Desired value Xges

24 | | | |
0 10 20 30 40 50 60
Time [s]
0.5 T T T T T
- Control u
v 04 —
&
o 03— =
S 02 -
5
S o1 -
0 ! \ \ .
0 10 20 30 40 50 60
Time Is]
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Block Diagram

>Xt

€ Uy

o

Measurement
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Delays

* |n practice most systems have delays
= (Can lead to overshoots/oscillations/de-stabilization

— 40 | | T T
o
]
S 35 —_—
<
Z 30 —
o
g Temperature x
£ 25 - Observation z 7
@ Desired value Xges
20 | | | | |
0 10 20 30 40 50 60
Time [s]
| 15 T T
- Control u
w
5 1 -
@
T
— 05 —
<
5§ or 4/——\
o
-0.5 | | | | |
0 10 20 30 40 50 60
Time [sl
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Delays

= What is the total dead time of this system?

100ms delay
in water pipe

Xdes

Controller Plant

Z
Measurement

50ms delay
in sensing
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Delays

= What is the total dead time of this system?

100ms delay
in water pipe

Controller Plant
Z
Measurement

50ms delay
in sensing

Xdes

= (Can we distinguish delays in the measurement from delays in
actuation?
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Delays

= What is the total dead time of this system?

Plant (and

Controller

X
des measurement)

= (Can we distinguish delays in the measurement from delays in
actuation? No!
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Position Control

Robot

Next Xdess Xdess Xdes

waypoint

Position
Control

Localization

Sensors Actuators

forces
torques

position
velocity
acceleration

Kinematics
Dynamics
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Rigid Body Kinematics

= (Consider a rigid body

= Free floating in 1D space, no gravity

= In each time instant, we can apply a force F
= Resultsin acceleration & = F'/m

= Desired position T ges = 1
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P Control

=  What happens for this control law?

Uy = K(xqes — Tp—1)

* This 1s called proportional control
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P Control

=  What happens for this control law?

U = K(fl:des — :Bt—l)

= This is called proportional control

Pos. [m]/ Vel. [m/s]
=
I

0 5 10 15 20 25 30
Time [s]

0.15 U=up+ug = -
0.1 Up =
0.05 Ui i |

0

-0.05

11

Control [m/s]
o
=

T 1

[

I

-0.15
-0.2 | | |
0 5 10 15 20 25 30

Time Is1
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PD Control

=  What happens for this control law?

U = Kp(xdes — xt—l) + KD(jjdes — jjt—l)

= Proportional-Derivative control

Pos. [m]/ Vel. [m/s]
[eNeNeNe)
N B O

T T T T 171
x

.0.2 | | | | |

0 5 10 15 20 25
Time [s]

0.2 T T T

Control [m/s]
o
T T T T T

0.2 | | | | |

0 5 10 15 20 25

Time Is1
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PD Control

=  What happens for this control law?

U = KP(xdes — xt—l) + KD(ftdes — ftt—l)

= What if we set higher gains?

— 15 T T

w

E ol

o

Z 05 _
E x

” 0 xa

(o]

T o5 | \ | \ | Xdes

0 5 10 15 20 25 3
Time [s]
0.2 | | N
— 0.15 u=up+uqg |
@ Up
£ 0.1 u; -
3 0.05 - U .
‘g‘ 0 - —
© 0.05 -
-0.1 | | | | |
0 5 10 15 20 25 30

Time Isl
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PD Control

=  What happens for this control law?

U = KP(xdes — xt—l) + KD(ftdes — ftt—l)

= What if we set lower gains?

Pos. [m]/ Vel. [m/s]
[eNeNe]
N RO
T

0 5 10

15
Time [s]

20

25 30

o
-
w

I

o
=
I

Control [m/s]
o©

o ¢

o w

T T
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PD Control

Pos. [m]/ Vel. [m/s]

Control [m/s]

= What happens when we add gravity?

0
20 .
40 -
X
60 — xd _
r ! ! ! \ Xdes
80
0 20 40 60 80 100 120
Time [s]
T T T
u=up+ uy
Up |
Uj
Uy ]
= | | | |
0 20 40 60 80 100 120
Time Is1
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Gravity compensation

= Add as an additional term in the control law

Ut = KP(ZUde.S — xt—l) =+ KD(jjdes — jjt—l) =+ Fgra,v

= Any known (inverse) dynamics can be included

Pos. [m]/ Vel. [m/s]
[eNeNeNe)
N B O

T T T T 171

/ xd
Ades
.0.2 | | | | |
0 5 10 15 20 25 30
Time [s]
0.2 : : ‘
0.15 - U= up + Ug -
v 0.1 Up =
E 005+ Yi R
§ 0 Uy
£ 005 - B
S -01f .
0.15 - -
0.2 | 1 | | |
0 5 10 15 20 25 30
Time Is1
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PD Control

* What happens when we have systematic errors? (control/sensor noise

with non-zero mean)
= Example: unbalanced quadrocopter, wind, ...

= Does the robot ever reach its desired location?

15 : [

1 -
0.5 —

Pos. [m]/ Vel. [m/s]

-0.5 | | | |

0 5 10 15 20

Time [s]
0.2 I

25

0.15

I

o
-
T

0.05

-0.05

T

Control [m/s]
o
T

-0.15
-0.2 | | 1 |

T

0 5 10 15 20

Time Is]
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PID Control

= [dea: Estimate the system error (bias) by integrating the error

U = KP(fEdeS _ :Et) + KD(i:des - 'Lf) + KI

= Proportional+Derivative+Integral Control

t

:
—00

Pos. [m]/ Vel. [m/s]
o
w
I

-0.5 | | | |
0 10 15 20 25 30
Time [s]
L3 I l ‘ ‘ u up +u
— =Up d
7 1 Up
£ 0.5 u; —
s} 0 - S e
£ 05 .
o 1L |
15 | 1 1 |
0 5 10 15 20 25 30
Time Is]

Vision-based Navigation

72

Computer Vision Group, TUM



PID Control

= [dea: Estimate the system error (bias) by integrating the error

t
Uy = Kp(Xges — @) + Kp(tges — 1) + K / Tges — Tpdt
— 00

= Proportional+Derivative+Integral Control
= For steady state systems, this can be reasonable

= QOtherwise, it may create havoc or even disaster (wind-up effect)
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Example: Wind-up effect

= (Quadrocopter gets stuck in a tree = does not reach steady state
= What is the effect on the I-term?

[=
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How to Choose the Coefficients?

= Gains too large: overshooting, oscillations
= (ains too small: long time to converge

* Heuristic methods exist

= [n practice, often tuned manually

15

T T
reference signal

0sl Kp=1 Ki=1 Kd=1

Ki=05
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De-coupled Control

= So far, we considered only single-input, single-output systems (SISO)
= Real systems have multiple inputs + outputs

= MIMO (multiple-input, multiple-output)

= In practice, control 1s often de-coupled

e
g
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Cascaded Control

Robot )
Trajectory 0.1 Hz
Localization Position Control 10 Hz
Attitude Estimation Attitude Control 1 KHz
. . 10.000
RPM Estimation Motor Speed Control
RPM
aNSO A atlo

Position Forces
Velocity Torques
Acceleration

Kinematics
Dynamics
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Assumptions of Cascaded Control

= Dynamics of inner loops is so fast that it 1s not visible from outer
loops

= Dynamics of outer loops is so slow that it appears as static to the
iner loops

Vision-based Navigation 78 Computer Vision Group, TUM



Example: Ardrone

Cascaded control
= Inner loop runs on embedded PC and stabilizes flight

= Quter loop runs externally and implements position control

Laptop Ardrone (=seen as the plant by the outer loop)

Outer loop er loop Pla

onboard, 1000Hz

wireless, approx. 15Hz
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Ardrone: Inner Control Loop

= Plant input: motor torques

T
Winner — (Tl T T3 7_4)

= Plant output: roll, pitch, yaw rate, z velocity

T
Xinner — (w:r. Wy Wy < )
attitude altitude
(measured using gyro + (measured using ultrasonic
accelerometer) distance sensor + attitude)
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Ardrone: Inner Control Loop

= Plant input: motor torques

T
Winner — (Tl Ty T3 7_4)

= Plant output: roll, pitch, yaw rate, z velocity

-
Xinner — (wil? Wy W Z)

Ardrone (=seen as the plant by the outer loop)

Inner loop

onboard, 1000Hz
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Ardrone: Outer Control Loop

= Quter loop sees mner loop as a plant (black box)
= Plant mput: roll, pitch, yaw rate, z velocity

= Plant output: T
Uouter = (wr Wy Wz Z)

-
Xouter — (Q? y = w)

Laptop

Outer loop Inner loop

wireless, approx. 15Hz
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Mechanical Equivalent

= PD Control is equivalent to adding spring-dampers between the
desired values and the current position

AV

AW = EJT, . il
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Advanced Control Techniques

What other control techniques do exist?

Adaptive control

Robust control

Optimal control

Linear-quadratic regulator (LQR)
Reinforcement learning

Inverse reinforcement learning

... and many more
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Summary: Feedback Control

PID control 1s the most used control technique in practice
= P control = simple proportional control, often enough
= PI control = can compensate for bias (e.g., wind)

= PD control = can be used to reduce overshoot (e.g., when
acceleration 1s controlled)

= PID control = all of the above
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Lessons Learned Today

= Probabilistic state estimation techniques

= Linear Kalman Filter, Extended KF, Unscented KF
= Efficient filtering techniques, well suited for onboard processing

= How to control a system using PID controllers

= Intuitive control laws
= FEasy to implement
= (Can be tricky to optimize parameters

= System simplifications: Decoupled and cascaded control
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Questions ?
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