

Computer Vision Group Prof. Daniel Cremers

Practical Course: Vision-based Navigation Winter Term 2016/2017

Projects

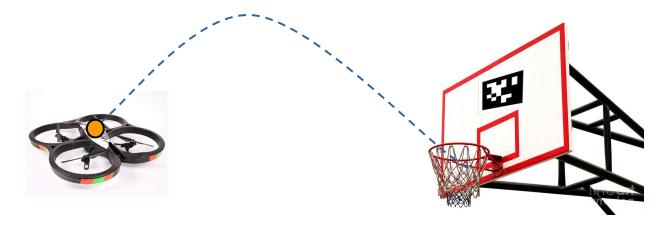
Vladyslav Usenko, Benjamin Grzimek, Lukas von Stumberg, Prof. Dr. Daniel Cremers

1. MAV Navigation to Photo-Goal

Idea:

Direct where your ordered packet should be delivered to by taking a photo of the goal location..

- Possible approach:
 - Direct image alignment for tracking
 - Simplifications to start with:
 - Take a RGB-D photo
 - Start from a nearby view
 - Make gradually more difficult
 - Small or no overlap with the goal view
 - LSD-SLAM instead of RGB-D



2. MAV Formation Flight

- Follow a leading MAV at a fixed relative pose
- Possible approach:
 - All computations on a base station PC
 - Wireless communication
 - EKF filtering of relative leader MAV pose from
 - Controls of both MAVs
 - Direct image alignment for pose tracking
 - Approach leader at a predefined relative position/yaw orientation
 - Simplifications to start with:
 - Take a RGB-D snapshot (single image segment)
 - Start from a nearby view
 - Make gradually more difficult
 - Small or no overlap with the snapshot view
 - Take and track a multi-view model of the leader MAV

3. MAV Basketball

- Through a ping-pong ball mounted on top of the drone into a basket
- Possible approach:
 - Track visual markers to localize the drone.
 - Calibrate basket location relative to the marker
 - Compute trajectory to through a ball
 - Track the ball using the camera
 - Use machine learning to optimize the trajectory

3. MAV Basketball

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

4. Person Following

- Follow a person with onboard camera on the quadcopter
- Try different options for human detection:
 - Bright color T-shirt: BLOB detector
 - Markers
 - Keypoints on textured objects

• • • • •

- Evaluate stability of tracking
- Implements several flight modes

4. Person Following

5. Drone Avoids Being Shot

- User tried to shoot the drone with a toy gun. The drone has to perform a maneuver to avoid being shot
 - Get location of the drone and gun using Motion Capture system
 - Keep the drone from the shooting line
 - Keep it in pre-defined volume of the room

6. Collision Avoidance

Collision Avoidance for Quadrocopters using Monocular Dense Mapping

Humberto Alvarez, Lina Paz, Jürgen Sturm, Daniel Cremers

Computer Vision Group Department of Computer Science Technical University of Munich

Questions?