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Variational Methods

Variational methods are a specific class of optimization
methods. The key idea is to define cost functionals over a
continuous solution space and to compute optima by solving
the corresponding extremality principle.

Variational methods allow to solve respective problems in a
mathematically transparent manner. Instead of performing a
heuristic sequence of processing steps one starts by defining
what properties a solution should have. Once these are fixed,
the appropriate algorithm can be derived “automatically”.

Variational methods are particularly suited for
infinite-dimensional problems. They are among the top
performing methods for:

• image denoising, deblurring, super-resolution
• image segmentation
• motion estimation
• dense 3D reconstruction
• tracking
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Advantages of Optimization Methods

Optimization methods have many advantages over traditional
multi-step approaches (such as the Canny edge detector):

• A mathematical analysis of the cost function allows
statements regarding the existence, uniqueness and
stability of solutions to a given problem.

• In traditional multistep processes the interplay of
consecutive steps is often complex and intransparent. It is
typically unclear how modifying or replacing one
component affects the subsequent steps.

• Optimization methods are based on transparent and
explicitly formulated assumptions, with no “hidden”
assumptions.

• In general, optimization methods have fewer parameters.
The meaning of each parameter is fairly obvious.

• Optimization methods are easily combined in a
transparent manner (by adding respective cost functions).
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A Simple Example: Image Denoising

Let f : Ω→ R be an input image corrupted by noise. The goal
is to compute a denoised version u of the image f .

The desired function u should fulfill two criteria:

• The function u should be similar to f .
• The function u should be spatially smooth.

Both criteria can be combined in the following cost function (or
energy):

E(u) = Edata(u, f ) + λEsmoothness(u),

where the first term measures the similarity of u and f and the
second term measures the smoothness of u. A weighting or
regularization parameter λ ≥ 0 specifies the relative
importance of smoothness versus data fit.

Most variational approaches have the above form. The merely
differ in how the similarity term (data term) and the smoothness
term (regularizer) are defined.
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Discrete Denoising in 1D

Let us assume for now that f is discrete in one spatial variable,
i.e. f = {f1, f2, . . . , fn} is simply a sequence of brightness values
fi ∈ R. We seek an approximation u = {u1, . . . ,un}.

The data term which measures similarity of f and u can for
example be written as:

Edata(u) =
1
2

n∑
i=1

(fi − ui )
2,

which means that we measure the overall brightness difference
as a sum of squared differences (SSD).

The smoothness term can for example be written as:

Esmooth(u) =
1
2

n−1∑
i=1

(ui − ui+1)2,

which means that we measure the sum of squared differences
for all neighboring brightness values.
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Discrete Denoising in 1D

The total energy is thus:

Eλ(u) =
1
2

n∑
i=1

(fi − ui )
2 +

λ

2

n−1∑
i=1

(ui − ui+1)2,

Larger values of λ imply that the smoothness of the solution
should play a bigger role.

A solution to the above denoising problem is a function û which
minimizes the above energy:

û = arg min
u

Eλ(u).

Variational methods determine functions which fulfill the
extremality principle:

dEλ(u)

du
= 0, ⇔ ∂Eλ(u)

∂ui
= 0 ∀i ∈ [1,n]
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Discrete Denoising in 1D

The extremality condition for each pixel is therefore:

∂Eλ(u)

∂u1
= (u1 − f1) + λ(u1 − u2) = 0,

∂Eλ(u)

∂ui
= (ui − fi ) + λ(2ui − ui−1 − ui+1) = 0, ∀i ∈ [2,n − 1],

∂Eλ(u)

∂un
= (un − fn) + λ(un − un−1) = 0.

These conditions form a system of linear equations:

Mλu =


1+λ −λ
−λ 1+2λ −λ

. . . . . . . . .
−λ 1+2λ −λ

−λ 1+λ




u1
u2
...

un−1
un

 =


f1
f2
...

fn−1
fn
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Discrete Denoising in 1D

• The matrix Mλ is tridiagonal.

• The inverse matrix M−1
λ exists. It is dense and has only

non-negative entries.

• The above system of equations can be solved in linear
time using Gaussian elimination (Thomas’ algorithm).

• The minimizer is unique because E(u) is strictly convex.

• Reminder:
• A set is called convex, if for any pair of points in the set, the

connecting line is also contained in the set.
• A function E(u) is called convex, if its epigraph is convex,

i.e. if for any two points on the graph of E the function
values are below the connecting line.

• E(u) is called strictly convex (streng konvex) if the function
values are strictly below the connecting line:

E((1−α)u1+αu2) < (1−α)E(u1)+αE(u2) ∀u1, u2 ∀α ∈ (0, 1).
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Proof of convexity

The function h(s) = s2 is convex:

h
(
(1−α)s1+αs2

)
< (1−α)h(s1)+αh(s2), ∀s1, s2, ∀α ∈ (0,1).

For any u = (u1, . . . ,un) and ũ = (ũ1, . . . , ũn) and for any
α ∈ (0,1) we therefore have:

Eλ((1− α)u + αũ) =
1
2

n∑
i=1

(
fi − ((1− α)ui + αũi )

)2

+
λ

2

n−1∑
i=1

((
(1− α)ui + αũi

)
−
(
(1− α)ui+1 + αũi+1

))2

=
1
2

n∑
i=1

(
(1− α)(fi − ui ) + α(fi − ũi )

)2

+
λ

2

n−1∑
i=1

((
(1− α)(ui − ui+1

)
+ α

(
ũi − ũi+1

))2

< (1− α)Eλ(u) + αEλ(ũ).
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Discrete Denoising (d-dim.)

Index all pixels of the d-dim volume with index i ∈ [1, . . . ,N],
where N = n1 · n2 · · · nd .

Variational denoising of an image f :

Eλ(u) =
1
2

N∑
i=1

(fi − ui )
2 +

λ

2

N∑
i=1

∑
j∈N (i)

(ui − uj )
2,

where N (i) denotes the neighborhood of pixel i .

Again E is strictly convex. The condition for (global) optimality
is:

dEλ(u)

dui
= (ui − fi ) + λ

∑
j∈N (i)

(ui − uj ) = 0 ∀i

In the higher-dimensional case, this gives rise to a large-scale
linear programming problem.
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Large Scale Linear Programming

For dimensions (d = 2,3, ...), the linear equation system

Mλu = f

is quite large.

Most entries of the matrix Mλ are 0 (sparse matrix). Yet, its
inverse is typically difficult to compute or even to store in
memory.

There exist numerous standard solvers for large linear
systems. The best known ones are the Jacobi method and the
Gauss-Seidel method.

In the following, we will discuss the Jacobi solver, the
Gauss-Seidel solver and various extensions.
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The Jacobi Method

The Jacobi method converges if the matrix M ≡ Mλ is strictly
diagonally dominant, i.e. if for any row of the matrix the
absolute value of the diagonal element is larger than the sum
of absolute values of the off-diagonal elements:

|mii | >
∑
j 6=i

|mij | ∀i

Decompose the matrix M = D + A into its diagonal part D and
the offdiagonal part A. Then:

Mu = (D + A)u = f ⇔ Du = f − Au

Initialize with an aribtrary function u0 and iterate:

u(k+1) = D−1(f − Au(k)), k = 0,1,2,3, . . .

Low computational and memory cost, easily parallelizable.

We can use the residuum r (k) := Mu(k) − f as a termination
criterion: |r

(k)|
|r (0)| < ε.
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Application to Image Denoising

• Separate diagonal part D:

ui + λ|N (i)|ui = fi + λ
∑

j∈N (i)

uj ∀i ,

where |N (i)| is the number of neighbors of pixel i .

• Iteration:

u(k+1)
i =

fi + λ
∑

j∈N (i)
u(k)

j

1 + λ|N (i)|
• Appropriate initialization:

u(0) = f

• Intuitive Interpretation: For each pixel i , the above iteration
induces a weighted averaging of brightness values in its
neighborhood N (i). The weights sum to 1.
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Alternative Methods
Besides the Jacobi method, there are other methods for solving
linear equation systems of the form Mu = f . In particular:

• Gauss-Seidel method: Updates pixel values sequentially
always using the most recent values:

u(k+1)
i =

1
mii

fi −
∑
j<i

miju
(k+1)
j −

∑
j>i

miju
(k)
j


Faster than the Jacobi method. But: not parallelizable,
solution depends on the order of updates.

• SOR method (Successive Over-Relaxation): Extrapolate
the Gauss-Seidel updates linearly for faster convergence:

u(k+1)
i = ωū(k+1)

i + (1− ω)u(k)
i

where ū(k+1)
i is the current solution of the Gauss-Seidel

method, and ω ∈ [1,2) the extrapolation factor (ω = 1:
Gauss-Seidel).
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Alternative Methods

There exists a multitude of numerical strategies to accelerate
algorithms. Two common examples are:

• Preconditioned Conjugate Gradients: Modification of the
gradient descent or steepest descent which minimizes
along orthogonal directions. Preconditioning can
additionally improve the convergence rate.

• Multigrid Methods: Solve the equation system starting
from a coarse-grid representation and use solution as
initalization on respective finer grids.

Which combination of methods leads to the fastest solution
depends on the type of optimization problem / cost function
and the available hardware.

For example, the Gauss-Seidel and SOR methods are typically
faster than the Jacobi method, but they are not directly
parallelizable.
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Spatially Continuous Variational Approaches

A spatially continuous variational approach to image denoising
and restoration looks as follows:

Given an image f : Ω ⊂ R2 → R find a smooth approximation
u : Ω→ R of this image. This can be determined by minimizing
a cost function of the form:

E(u) =
1
2

∫ (
u(x)− f (x)

)2 dx +
λ

2

∫
|∇u(x)|2 dx

This is the spatially continuous analogue of the previously
discussed discrete formulation.

Such a mapping which assigns a real number E(u) to a
function u(x) is also referred to as a functional.

How does one minimize the above functional with respect to
the function u?
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Functional Minimization

A functional is a mapping E which assigns to each element of
a vector-space (to each function u) an element from the
underlying field (a number).

Let
E(u) =

∫
L(u,u′) dx

be a functional, where u′ = du
dx is the derivative of the function

u. (In physics L is called the Lagrange density).

Example: L(u,u′) = 1
2

(
u(x)− f (x)

)2
+ λ

2 |u
′(x)|2.

Just as with real-valued functions defined on Rn the necessary
condition for extremality of the functional E states that the
derivative with respect to u must be 0.

Yet how does one define and compute the derivative of a
functional E(u) with respect to the function u?
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The Gâteaux Derivative
There are several ways to introduce functional derivatives. The
following definition goes back to works of the French
mathematician R. Gâteaux († 1914) which were published
posthumously in 1919: http:

//archive.numdam.org/ARCHIVE/BSMF/BSMF_1919__47_/BSMF_1919__47__47_1/BSMF_1919__47__47_1.pdf

The Gâteaux derivative extends the concept of directional
derivative to infinite-dimensional spaces.

The derivative of the functional E(u) in direction h(x) is defined
as:

dE(u)

du

∣∣∣
h

= lim
ε→0

E(u + εh)− E(u)

ε

As in finite dimensions, this directional derivative can be
interpreted as the projection of the functional gradient on the
respective direction. We can therefore write:

dE(u)

du

∣∣∣
h

=

〈
dE(u)

du
,h
〉

=

∫
dE(u)

du
(x) h(x) dx

http://archive.numdam.org/ARCHIVE/BSMF/BSMF_1919__47_/BSMF_1919__47__47_1/BSMF_1919__47__47_1.pdf
http://archive.numdam.org/ARCHIVE/BSMF/BSMF_1919__47_/BSMF_1919__47__47_1/BSMF_1919__47__47_1.pdf
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The Gâteaux Derivative
For functionals of the canonical form: E(u) =

∫
L(u,u′) dx the

Gâteaux derivative is given by

dE(u)

du

∣∣∣
h

= lim
ε→0

1
ε

(
E(u + εh)− E(u)

)
= lim
ε→0

1
ε

∫ (
L(u + εh,u′ + εh′)− L(u,u′)

)
dx

= lim
ε→0

1
ε

∫ ((
L(u,u′) +

∂L
∂u

εh +
∂L
∂u′

εh′ + o(ε2)
)
− L(u,u′)

)
dx

=

∫ (
∂L
∂u

h +
∂L
∂u′

h′
)

dx

=

∫ (
∂L
∂u

h − d
dx

∂L
∂u′

h
)

dx (partial int., h = 0 on boundary)

=

∫ (
∂L
∂u
− d

dx
∂L
∂u′

)
︸ ︷︷ ︸

dE
du

h(x) dx .
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Euler-Lagrange Equation

Thus the derivative of the functional E(u) in direction h is:

dE(u)

du

∣∣∣
h

=

∫ (
∂L
∂u
− d

dx
∂L
∂u′

)
︸ ︷︷ ︸

dE
du

h(x) dx .

As a necessary condition for minimality of the functional E(u)
the variation of E in any direction h(x) must vanish. Therefore
at the extremum we have:

dE
du

=
∂L
∂u
− d

dx
∂L
∂u′

= 0

This condition is called the Euler-Lagrange equation.

Example: For L(u,u′) = 1
2

(
u(x)− f (x)

)2
+ λ

2 |u
′(x)|2, we get:

∂L
∂u
− d

dx
∂L
∂u′

=
(
u(x)− f (x)

)
− d

dx
(
λu′(x)

)
= u − f − λu′′ = 0
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Functional Minimization

The Euler-Lagrange equation is a differential equation which
forms the necessary condition for minimality.

The central idea of variational methods is to compute solutions
to the respective Euler-Lagrange equation.

This can be done in several ways. For example, one can
discretize the function u on a set of points {x1, . . . , xn} and
subsequently try to solve for the values u(xi ). For quadratic
cost functions, the arising set of linear equations can be solved
using the discussed iterative algorithms (Jacobi,
Gauss-Seidel,...). In general, however, the Euler-Lagrange
equation will not be linear.

For general (non-quadratic) energies, one can start with an
initial guess u0(x) of the solution and iteratively improve the
solution. Such methods are called descent methods.

How can one iteratively improve a given solution?
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Gradient Descent

Gradient descent or steepest descent is a particular descent
method where in each iteration one chooses the direction in
which the energy decreases most. The direction of steepest
descent is given by the negative energy gradient.

To minimize a real-valued function f : Rn → R, the gradient
descent for f (u) is defined by the differential equation:{

u(0) = u0

du
dt = − df

du (u)

Discretization: ut+1 = ut − ε df
du (ut ), t = 0,1,2, . . . .
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Gradient Descent

For minimizing functionals E(u), the gradient descent is done
analogously.

For the functional E(u) =
∫
L(u,u′) dx , the gradient is given by:

dE
du

=
dL
du
− d

dx
dL
du′

.

Therefore the gradient descent is given by:
u(x ,0) = u0(x)

∂u(x , t)
∂t

= −dE
du

= −dL
du

+
∂

∂x
dL
du′

.

For L(u,u′) = 1
2

(
u − f

)2
+ λ

2 |u
′|2, this means:

∂u
∂t

= (f − u) + λu′′ = (f − u) + λ∆u.

If the gradient descent converges, i.e. ∂tu = − dE
du = 0, then we

have found a solution to the Euler-Lagrange equation.
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Diffusion with Data Term

E(u) =
∫

(f − u)2dx + λ
∫
|∇u|2 dx → min.

E(u) = λ
∫
|∇u|2 dx → min.

Author: D. Cremers
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Addendum: Boundary Conditions

When deriving the Euler-Lagrange equations we only
considered perturbations h(x) which are 0 on the boundary.

Without this assumption, Gâteaux’s directional derivative is:

dE(u)

du

∣∣∣
h

= · · · =

∫ b

a

(
∂L
∂u

h +
∂L
∂u′

h′
)

dx

=

∫ b

a

(
∂L
∂u

h − d
dx

∂L
∂u′

h
)

dx +

(
∂L
∂u′

h(x)

)b

a

=

∫ b

a

(
∂L
∂u
− d

dx
∂L
∂u′

)
h(x) dx +

(
∂L
∂u′

h(x)

)b

a
= 0

⇒


1)

dE
du

=
∂L
∂u
− d

dx
∂L
∂u′

= 0

2)

(
∂L
∂u′

h(x)

)b

a
= 0
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Addendum: Boundary Conditions
Depending on the application one can distinguish two kinds of
boundary conditions:

• Dirichlet boundary conditions: The function u(x) is fixed
on the boundary (ur (x)), i.e. h(x) = 0 on the boundary.
One only considers variations of u(x) inside the domain:

dE
du

=
∂L
∂u
− d

dx
∂L
∂u′

= 0

u(x)
∣∣∣

boundary
= ur (x)

• Neumann boundary conditions: One additionally allows for
variations of u(x) on the boundary:

dE
du

=
∂L
∂u
− d

dx
∂L
∂u′

= 0

∂L
∂u′

∣∣∣∣
boundary

= 0
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Diffusion as Gradient Descent

Many diffusion equations (albeit not all) can be derived as the
gradient descent on a specific energy.

The energy:

E(u) =

∫
L(u,∇u) dx =

1
2

∫
g(x)|∇u(x)|2 dx

leads to the gradient descent:

∂u(x , t)
∂t

= −dE
du

= −∂L
∂u

+∇ ∂L
∂∇u

= ∇
(

g(x)∇u
)

This equation corresponds to an inhomogeneous diffusion with
diffusivity g(x).

In other words, the above inhomogeneous diffusion process is
nothing but a steepest descent on the weighted smoothness
energy.
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Leonhard Euler

Leonhard Euler (1707 – 1783)

• Published 886 papers and books, most of them in the last
20 years of his life. Considered the greatest
mathematician of the 18th century.

• Major contributions: Euler number e, Euler angles, Euler
formula, Euler theorem, Euler equations (for fluid flows),
Euler-Lagrange equations,...

• 13 children



Variational Calculus

Prof. Daniel Cremers

Variational Methods

Image Denoising

Iterative Solvers

Infinite-Dimensional
Setting

The Gâteaux
Derivative

The Euler-Lagrange
Equation

Gradient Descent

Boundary Conditions

Diffusion as Gradient
Descent

Euler and Lagrange

updated 2017-01-26 30/30

Joseph-Louis Lagrange

Joseph-Louis Lagrange (1736 – 1813)

• born Giuseppe Lodovico Lagrangia (in Turin). self-taught.
• With 17 years: Professor for mathematics in Turin.
• Later in Berlin (1766-1787) and Paris (1787-1813).
• 1788: La Méchanique Analytique.
• 1800: Leçons sur le calcul des fonctions.
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