Variational Methods for Computer Vision: Exercise Sheet 3

Exercise: November 7, 2016

Part I: Theory

The following exercises should be **solved at home**. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex real valued function. A point $\tilde{x} \in \mathbb{R}^n$ is a local minimizer of f if there exists a neighboorhood $\mathcal{N}(\tilde{x})$ such that $f(\tilde{x}) \leq f(x), \ \forall x \in \mathcal{N}(\tilde{x})$. A stationary point of f is a point at which the gradient vanishes, hence a point x^* which satisfies the following equation:

$$\nabla f(x^*) = 0.$$

Prove the following statements:

- (a) Every local minimizer of f is a global minimizer.
- (b) Suppose f is additionally differentiable. Every stationary point of f is a global minimizer.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a real valued function. The epigraph of f is the following set:

epi
$$f := \{(u, a) \in \mathbb{R}^n \times \mathbb{R} \mid f(u) \le a\}$$

Prove that f is convex if and only if its epigraph is a convex set.

3. Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $g: \mathbb{R}^n \to \mathbb{R}$ be real valued convex functions. Show whether or not the following functions are convex:

(a)

$$h(x) := \alpha f(x) + \beta g(x)$$
, where $\alpha, \beta > 0$.

(b)

$$h(x) := \max(f(x), g(x))$$

(c)

$$h(x) := \min(f(x), g(x))$$

4. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be twice differentiable convex functions. Find the condition on f that assures the function:

$$h(x) := f(g(x))$$

is convex by using the fact that function h is convex if and only if $h(x)'' \ge 0$.

Part II: Practical Exercises

This exercise is to be solved **during the tutorial**.

1. In the lecture we encountered the following cost function for denoising images:

$$E_{\lambda}(u) = \frac{1}{2} \sum_{i=1}^{N} (f_i - u_i)^2 + \frac{\lambda}{2} \sum_{i=1}^{N} \sum_{j \in \mathcal{N}(i)} (u_i - u_j)^2.$$
 (1)

where u is the seeked image, f is the input image and where $\mathcal{N}(i)$ denotes a neighborhood of pixel i. Minimize the above function by solving the linear system of equations which arises from the optimality condition, using the Gauss-Seidel method.

2. To test the denoising capabilities of your method, degrade the input image with Gaussian noise (MATLAB: help randn). Does your result depend on the initialization? Explain why/why not. Also explain how the solution depends on the parameter λ .