Variational Methods for Computer Vision: Exercise Sheet 4

Exercise: November 14, 2014

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $u \in C^{2}(\Omega ; \mathbb{R})$ be a real valued function and $\Omega \subset \mathbb{R}$. And let

$$
E(u)=\int_{\Omega} \mathcal{L}\left(u(x), u^{\prime}, u^{\prime \prime}\right) \mathrm{dx}
$$

be a real valued Gâteaux differentiable functional which depends on:

$$
u(x), \quad u^{\prime}=\frac{\mathrm{d}}{\mathrm{dx}} u(x), \quad \text { and } \quad u^{\prime \prime}=\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}} u(x)
$$

Calculate the Gâteaux derivative of $E(u)$:

$$
\left.\frac{\mathrm{d} E(u)}{\mathrm{du}}\right|_{h}
$$

for any differentiable direction h.
2. Prove the following identities for $\Omega \subset \mathbb{R}^{n}, f \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}\right), g \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$:
(a) $\operatorname{div}(f g)=\nabla f \cdot g+f \operatorname{div} g$,
(b) $\int_{\Omega} \nabla f \cdot g \mathrm{~d} x=\int_{\partial \Omega} f\langle g, n\rangle \mathrm{d} s-\int_{\Omega} f \operatorname{div} g \mathrm{~d} x$,
where n is the unit vector normal to the boundary $\partial \Omega$. Hint for 2 b : divergence theorem on exercise sheet 1 .
3. Let $u \in C^{1}\left(\mathbb{R}^{3} ; \mathbb{R}\right)$ be a real valued function. And let

$$
E(u)=\int_{\Omega} \mathcal{L}(u(x), \nabla u(x)) \mathrm{dx}
$$

be a real valued Gâteaux differentiable functional. Calculate the Gâteaux derivative of $E(u)$. Hint: Use multidimensional integration by parts as derived in question 2 b .
4. Let $u \in C^{1}(\Omega ; \mathbb{R})$ be a real valued function with $\Omega \subset \mathbb{R}^{2}$. Derive the Euler-Lagrange Equation of the following energies:
(a) The total variation of the function u

$$
E_{1}(u)=\int_{\Omega}|\nabla u(x)| \mathrm{dx}
$$

(b) The anisotropic total variation

$$
E_{2}(u)=\int_{\Omega} \sqrt{\nabla u(x)^{T} D(x) \nabla u(x)} \mathrm{dx}
$$

where $D(x) \in \mathbb{R}^{2 \times 2}$ is a real valued matrix.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. In the lecture you encountered the continuous counterpart of the denoising energy from the previous exercise sheet

$$
\frac{\lambda}{2} \int_{\Omega}(u-f)^{2} \mathrm{dx}+\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} \mathrm{dx}
$$

where $\Omega \subset \mathbb{R}^{2}$ represents the image domain, $u: \Omega \rightarrow \mathbb{R}$ denotes the optimization variable and $f: \Omega \rightarrow \mathbb{R}$ stands for the input image. The corresponding Euler-Lagrange equation is given as

$$
\begin{equation*}
\lambda(u-f)-\Delta u=0 \tag{1}
\end{equation*}
$$

In the finite-dimensional setting, consider the images as vectors $u \in \mathbb{R}^{N}, f \in \mathbb{R}^{N}$.
(a) Discretize the continuous gradient operator as $\nabla=\left(\partial_{x}^{+} \quad \partial_{y}^{+}\right)^{\top} \in \mathbb{R}^{2 N \times N}$ using forward differences with Neumann boundary conditions, representing it as a sparse matrix (help spdiags, help speye).
(b) Solve the linear system arising from (1) using the backslash command (help
). Note that the divergence is the negative adjoint of the gradient, thus $\Delta=\operatorname{div} \nabla=-\nabla^{\top} \nabla$.

