Variational Methods for Computer Vision: Exercise Sheet 5

Exercise: November 21, 2016

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $u \in C^{2}(\Omega ; \mathbb{R})$ be a twice differentiable real-valued function and $\Omega \subset \mathbb{R}^{2}$. And let

$$
E(u)=\int_{\Omega} \mathcal{L}\left(u(x), \nabla u(x), \nabla^{2} u(x)\right) \mathrm{dx}
$$

be a real valued Gâteaux differentiable functional which depends on $u, \nabla u$ and the Hessian $\nabla^{2} u$. Calculate the Gâteaux derivative of E.
2. Calculate the Euler-Lagrange equation of the following energy functional:

$$
E(u)=\frac{1}{2 \lambda} \int_{\Omega}(k * u-f)^{2}+\int_{\Omega}|\nabla u| \mathrm{dx}
$$

Where $\Omega \subset \mathbb{R}^{2}$ represents the image domain, $u: \Omega \rightarrow \mathbb{R}$ denotes the optimization variable, $f: \Omega \rightarrow \mathbb{R}$ stands for the input image and k denotes a convolution kernel (not necessarily symmetrical).

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Finish the exercises from last week.
