Variational Methods for Computer Vision: Exercise Sheet 6

Exercise: November 28, 2016

Part I: Theory

1. Let $L: X \rightarrow Y$ be a linear operator and X, Y be finite dimensional vector spaces with $\operatorname{dim} X=$ n and $\operatorname{dim} Y=m$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{m}\right\}$ be the bases for X and respectively for Y. Show that the operator L can be represented by an $m \times n$ matrix M, hence:

$$
L(u)=M u, \quad \forall u \in X
$$

2. Calculate the Euler-Lagrange equation of the following energy functional

$$
E(u)=\int_{\Omega} \mathcal{L}(u(x), \nabla u(x), A u(x)) \mathrm{dx}
$$

where $\Omega \subset \mathbb{R}^{2}, u: \Omega \rightarrow \mathbb{R}$, and $A:(\Omega \rightarrow \mathbb{R}) \rightarrow(\Omega \rightarrow \mathbb{R})$ is a linear mapping.
Hint: use the adjoint A^{*} of the operator A for which the following identity holds

$$
\int_{\Omega} u(x)(A v)(x) \mathrm{d} x=\int_{\Omega}\left(A^{*} u\right)(x) v(x) \mathrm{d} x
$$

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

Super-Resolution from Video.

In the lecture we encountered the concept of super resolution from video. The key idea of super resolution is to exploit redundancy available in multiple frames of a video. Assuming that each input frame is a blurred and downsampled version of a higher resolved image u, the high-resolution image can be recovered as the minimum of the following energy functional:

$$
\begin{equation*}
E(u)=\sum_{i=1}^{n} \int_{\Omega}\left(\left(A B S_{i} u\right)(x)-\left(U f_{i}\right)(x)\right)^{2} \mathrm{dx}+\lambda \int_{\Omega}|\nabla u(x)| \mathrm{dx} . \tag{1}
\end{equation*}
$$

The Linear Operator B denotes a Gaussian Blurring. The upsampling operator U simply replaces every pixel with four pixels of the same intensity. In order to be able to compare image u with the upsampled version of f_{i} which is constant blockwise, we apply the linear averaging operator A on u which assigns every block of pixels the mean values of the pixels in that block. The linear operator S_{i} accounts for the coordinate shift by motion s_{i} hence:

$$
\left(S_{i} u\right)(x)=u\left(x+s_{i}(x)\right) .
$$

1. In the following we are going to construct a toy example for super resolution by executing the following steps:
(a) Download the archive vmcv_ex06.zip and unzip it on your home folder. In there should be a file named Boat. png.
(b) Create from the unzipped image 6 versions shifted in x direction by exactly one pixel hence:

$$
f_{i}(x, y)=f(x+i, y),
$$

for $i=1 \ldots 6$. In order to account for the boundary, consider taking cropped images from the interior of the original image.
(c) In order to simulate blurring convolve the shifted images with a gaussian kernel. Next downsample the images f_{i} by factor 2 by using the imresize function in Matlab with nearest neighbor interpolation.
2. In what follows we are going to minimize the above functional in order to obtain a super resolved image from our input images f_{i}.
(a) Derive the Euler-Lagrange equation of E and the corresponding gradient descent scheme.
(b) Compute the matrix representations of the linear operators A, B, S_{i} and U. Since these matrices are huge, again use sparse data structures in Matlab (spdiags speye) in order to obtain a sparse representation.
(c) Compute $u^{*}=\arg \min _{u} E(u)$ by means of gradient descent using matrix vector representation after stacking the function u in a vector using the matlab command reshape.

