Variational Methods for Computer Vision: Exercise Sheet 7

Exercise: December 12, 2016

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $\Omega=[-5 ; 5] \times[-5 ; 5]$ be a rectangular area and let $I: \Omega \rightarrow[0,1]$ be an image given by

$$
I(x, y)= \begin{cases}1, & \text { if } x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Furthermore let $C:[0,1] \rightarrow \Omega$ be a curve represented by a circle centered at the origin having radius r.
(a) Following the lecture, write down the Gâteaux derivatives of the Mumford-Shah functional for 2 regions

$$
E\left(\left\{u_{1}, u_{2}\right\}, C\right)=\int_{\Omega_{i}}\left(I(x)-u_{1}\right)^{2}+\left(I(x)-u_{2}\right)^{2} \mathrm{~d} x+\nu|C|
$$

for the two cases $r>1$ and $r \leq 1$.
(b) Show that the Gâteaux derivative at $r=0$ is not continuous. Why is $\nu \leq 1$ a good choice in order to obtain good segmentation results? What is the ideal choice for ν in our example?
2. Consider the the geodesic active contour functional,

$$
\begin{equation*}
E(C)=\int_{0}^{1} g(C(s))\left|C^{\prime}(s)\right| d s \tag{1}
\end{equation*}
$$

where $C:[0,1] \rightarrow \Omega \subset \mathbb{R}^{2}$ and $g: \Omega \rightarrow \mathbb{R}$ denotes some edge indicator function. Convince yourself that the gradient descent equation for C is given by:

$$
\frac{d C}{d t}=(g \kappa-\langle\nabla g, n\rangle) n
$$

by calculating the Euler-Lagrange equation of (1). Here κ denotes the curvature and n the normal vector of the parametrized curve $C:[0,1] \rightarrow \Omega$.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Finish the practical exercises from the previous exercise sheets.
