Variational Methods for Computer Vision: Exercise Sheet 10

Exercise: January 16, 2017

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. The Chan-Vese functional $E(\phi)$ from last exercise sheet has been reformulated by Chan, Esodoglu and Nikolova by associating $u \equiv H(\phi)$ where $u: \Omega \rightarrow[0,1]$. The resulting functional can be written as follows:

$$
\begin{equation*}
E(u)=\int_{\Omega} f_{1}(x) u(x)+f_{2}(x)(1-u(x))+\nu|\nabla u(x)| \mathrm{dx} \tag{1}
\end{equation*}
$$

(a) Prove that (1) is a convex functional.
(b) Prove that $U=\{u: \Omega \rightarrow[0,1]\}$ is a convex set.
(c) The projection $f_{U} \in U$ of a given function $f: \Omega \rightarrow \mathbb{R}$ onto the set U can be written as the minimizer of the following functional

$$
f_{U}:=\arg \min _{u \in U}\left(\int_{\Omega}(f(x)-u(x))^{2} \mathrm{dx}\right)
$$

Show that :

$$
f_{U}(x)= \begin{cases}1, & \text { if } \quad f(x)>1 \\ 0, & \text { if } \quad f(x)<0 \\ f(x), & \text { otherwise }\end{cases}
$$

(d) Prove that the Euler-Lagrange equation of (1) can be written as follows:

$$
\left[f_{1}-f_{2}-\nu \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)\right]=0
$$

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Implement the minimization of the Chan-Esodoglu-Nikolova functional and make sure the optimization stays in the constrained space of functions U from the theoretical exercise by doing a re-projection by clipping (as in exercise 1c).
2. Test your implementation on the image image.png from last exercise sheet by initializing the the algorithm with a circle of radius R in the center of the image.
3. After obtaining the global minimizer visualize the segmentation result by thresholding the resulting function i.e by using the command imagesc ($u<0.5$).
