Variational Methods for Computer Vision: Solution Sheet 1

Exercise: 24 October 2016

Part I: Theory

1. Refresher: Multivariate analysis.

(a) i.
$$\nabla f = (x, y)^{\top}$$

ii. $\nabla f = (x^2 + y^2)^{-1/2} (x, y)^{\top}$

(b) i.
$$J = \begin{pmatrix} \cos(\varphi) & -r\sin(\varphi) \\ \sin(\varphi) & r\cos(\varphi) \end{pmatrix}$$
 ii.
$$J = \begin{pmatrix} -r\sin(t) \\ r\cos(t) \end{pmatrix}$$

(c) i.
$$\operatorname{div} f = 0$$

ii. $\operatorname{div} f = 2$

(d) The solutions for the two functions from 1c are:

i.
$$\operatorname{curl} f = 2$$
,

ii.
$$\operatorname{curl} f = 0$$
.

Proof for the curl of the gradient:

$$\operatorname{curl}(\nabla f) = \operatorname{curl}\left(\frac{\partial f}{\partial x}\right)$$

$$= \frac{\partial}{\partial x} \frac{\partial f}{\partial y} - \frac{\partial}{\partial y} \frac{\partial f}{\partial x}$$

$$= \frac{\partial}{\partial x} \frac{\partial f}{\partial y} - \frac{\partial}{\partial x} \frac{\partial f}{\partial y}$$

$$= 0.$$

(Symmetry of partial derivatives)

(e) i. Using the coordinate transformation from 1(b)i with $\det J = r$, the area of a disk D_R of radius R can be calculated as

$$\iint_{D_R} dx \, dy = \int_0^{2\pi} \int_0^R r \, dr \, d\varphi$$
$$= 2\pi \left[\frac{1}{2} r^2 \right]_0^R$$
$$= \pi R^2.$$

ii. Using a parametrization like in 1(b)ii, $\gamma_R \colon [0,2\pi] \to \mathbb{R}^2$, $f(t) = (R\cos(t),R\sin(t))^\top$ with $\|\gamma_R'\|_2 = R$, the circumference of a circle with radius R can be calculated as

$$\int_{\gamma_R} \mathrm{d}s = \int_0^{2\pi} R \, \mathrm{d}\varphi$$
$$= 2\pi R.$$

(f) First calculate the left-hand side of the divergence theorem:

$$\iint_{D_R} \operatorname{div} f \, \mathrm{d}x \, \mathrm{d}y = \iint_{D_R} 2 \, \mathrm{d}x \, \mathrm{d}y$$

$$= 2\pi R^2. \tag{Using 1(e)i)}$$

For the right-hand side, first calculate the normal vector. The points on the boundary ∂D_R can be characterized by the zero set of $g(x,y)=x^2+y^2-R^2$. Calculating the gradient $\nabla g=(2x,2y)^{\top}$ will give the direction of the normal n, and normalizing the gradient yields $n=(x^2+y^2)^{-1/2}(x,y)^{\top}=(x,y)^{\top}/R$. Now the integral becomes

$$\int_{\partial D_R} \langle f, n \rangle \, \mathrm{d}s = \int_{\gamma_R} \frac{1}{R} (x^2 + y^2) \, \mathrm{d}s$$

$$= \int_{\gamma_R} R \, \mathrm{d}s$$

$$= 2\pi R^2, \qquad \text{(Using 1(e)ii)}$$

which is equal to the left-hand side.

2. (a) i. Associativity:

$$((f*g)*h)(u) = \int_{\mathbb{R}} (f*g)(x) h(u-x) dx$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(y)g(x-y) dy \right) h(u-x) dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(y)g(x-y)h(u-x) dy dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(y)g(x-y)h(u-x) dx dy \qquad \text{(Fubini's theorem)}$$

$$= \int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g(x-y)h(u-x) dx dy$$

$$= \int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g((x+y)-y)h(u-(x+y)) dx dy \qquad \text{(Translation invariance)}$$

$$= \int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g(x)h((u-y)-x) dx dy$$

$$= \int_{\mathbb{R}} f(y)(g*h)(u-y) dy$$

$$= (f*(g*h))(u).$$

ii. Commutativity:

$$\begin{split} (f*g)(u) &:= \int_{\mathbb{R}} f(x) \, g(u-x) \, \mathrm{d}x \\ &= \int_{\varphi_u(\mathbb{R})} g(\varphi_u(x)) f(\varphi_u(u-x)) |\det J_{\varphi_u}| \, \mathrm{d}x, \\ &= \int_{\mathbb{R}} f(u-x) \, g(x) \, \mathrm{d}x \qquad \text{with } \varphi_u(x) = u-x, |\det J_{\varphi_u}| = 1, \varphi_u(\mathbb{R}) = \mathbb{R}, \\ &= \int_{\mathbb{R}} g(x) f(u-x) \, \mathrm{d}x, \\ &=: (g*f)(u). \end{split}$$

iii. Distributivity:

$$f * (g+h)(u) = \int_{\mathbb{R}} f(x)(g+h)(u-x) dx$$
$$= \int_{\mathbb{R}} f(x)g(u-x) + f(x)h(u-x) dx$$
$$= \int_{\mathbb{R}} f(x)g(u-x) dx + \int_{\mathbb{R}} f(x)h(u-x) dx$$
$$= (f * g + f * h)(u).$$

(b) We start with the definition of the Fourier transform:

$$\mathcal{F}\{f * g\}(\nu) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(y)g(x - y) \, dy \right) e^{-2\pi i x \nu} \, dx$$
$$= \int_{\mathbb{R}} f(y) \left(\int_{\mathbb{R}} g(x - y)e^{-2\pi i x \nu} \, dx \right) \, dy.$$

Introducing the substitution z = x - y, dz = dx we arrive at

$$\int_{\mathbb{R}} f(y) \left(\int_{\mathbb{R}} g(x-y) e^{-2\pi i x \nu} \, \mathrm{d}x \right) \, \mathrm{d}y = \int_{\mathbb{R}} f(y) \left(\int_{\mathbb{R}} g(z) e^{-2\pi i (z+y)\nu} \, \mathrm{d}z \right) \, \mathrm{d}y$$

$$= \int_{\mathbb{R}} f(y) e^{-2\pi i y \nu} \int_{\mathbb{R}} g(z) e^{-2\pi i z \nu} \, \mathrm{d}z \, \mathrm{d}y$$

$$= \underbrace{\int_{\mathbb{R}} f(y) e^{-2\pi i y \nu} \, \mathrm{d}y}_{=:\mathcal{F}\{f\}(\nu)} \underbrace{\int_{\mathbb{R}} g(z) e^{-2\pi i z \nu} \, \mathrm{d}z}_{=:\mathcal{F}\{g\}(\nu)}.$$

As the Fourier transform can be implemented to run in $\mathcal{O}(n \log n)$ time, convolutions can be computed efficiently by exploiting this property:

$$f * g = \mathcal{F}^{-1} \{ \mathcal{F} \{ f \} \cdot \mathcal{F} \{ g \} \}.$$

(c) Let us consider the difference quotient

$$\frac{(f * g)(x+t) - (f * g)(x)}{t} = \int_{\mathbb{R}} f(y) \frac{g(x+t-y) - g(x-y)}{t} \, \mathrm{d}y.$$

Now taking the limit $t \to 0$ we have

$$\frac{d}{dx}(f*g)(x) = \lim_{t \to 0} \frac{(f*g)(x+t) - (f*g)(x)}{t}$$

$$= \lim_{t \to 0} \int_{\mathbb{R}} f(y) \frac{g(x+t-y) - g(x-y)}{t} \, \mathrm{d}y$$

$$= \int_{\mathbb{R}} \lim_{t \to 0} f(y) \frac{g(x+t-y) - g(x-y)}{t} \, \mathrm{d}y$$

$$= \int_{\mathbb{R}} f(y) (\frac{d}{dx}g)(x-y) \, \mathrm{d}y$$

$$= f*\frac{dg}{dx} = \frac{dg}{dx} * f.$$

Remark: In order to interchange integration and limit, one needs some additional conditions to hold (see Lebesgue's dominated convergence theorem). The theorem requires that

$$F_t(y) := f(y) \frac{g(x+t-y) - g(x-y)}{t},$$

convergences pointwise to a function $F_t(y) \to F(y)$, and F_t is dominated by an integrable function g in the sense

$$|F_t(y)| \leq g(y), \forall t, \forall y.$$

The remaining equality follows from the above and commutativity of convolution:

$$\frac{d}{dx}(f*g) = \frac{d}{dx}(g*f) = g*\frac{df}{dx} = \frac{df}{dx}*g.$$