Variational Methods for Computer Vision: Solution Sheet 1

Exercise: 24 October 2016

Part I: Theory

1. Refresher: Multivariate analysis.
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(d) The solutions for the two functions from 1c are:
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curl f = 2,
curl f = 0.

Proof for the curl of the gradient:
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Using the coordinate transformation from 1(b)i with det J = r, the area of a disk Dp

of radius R can be calculated as
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Using a parametrization like in 1(b)ii, vz : [0, 271] — R2, f(t) = (Rcos(t), Rsin(t)) "
with ||y |l2 = R, the circumference of a circle with radius R can be calculated as
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(f) First calculate the left-hand side of the divergence theorem:
// divfd:cdy:// 2dx dy
Dpr Dpg

= 27 R (Using 1(e)i)

For the right-hand side, first calculate the normal vector. The points on the boundary 0D g
can be characterized by the zero set of g(z,y) = 22 + y?> — R?. Calculating the gradient
Vg = (2x,2y)" will give the direction of the normal n, and normalizing the gradient
yields n = (2% + y?)~/2(z,y)" = (z,y)" /R. Now the integral becomes

1
/BDR<f,n>ds: R(:E +y?)ds

= Rds

TR

= 2w R?, (Using 1(e)ii)
which is equal to the left-hand side.

2. (a) 1. Associativity:

((f*g)*h)(U)—/R(f*g)(x)h(u—w)dx

- [ ([ stpste ) dy) h(u— ) da
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/ / fly Yh(u — z) de dy (Fubini’s theorem)
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/ 1) / g(x)h((u - y) — ) dzdy

/f (gxh)(u—1y)dy
= (f*(g=h))(u).
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ii. Commutativity:
(=)= [ f@)gtu—o)ds
9(pu()) f(pu(u — z))| det Jy, | dx,

flu—2x)g(x)dz with ¢, (2) =u — x,|det J, 1, pu(R) =R,
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iii. Distributivity:
fr(g+h)(u /f )(g + h)(u — ) da
/f (u—x)+ f(x)h(u—z)dx

/f (u—x dx—i—/f (u—x)
= (f*g+f*h)(w).

(b) We start with the definition of the Fourier transform:

F{f* g} / < / Iy )ezm”d:r
—/]Rf(y) (/Rg(x—y)e‘%"“dw) dy.

Introducing the substitution z = z — y, dz = dx we arrive at

[ 1w ( / g(m—y)e—mdx> a= [ ) < /| g(z)e—w”y)”dz) ay
/f 2myu/ g(z)e~ 2 4z dy
/f Yo~ 2T gy /]R (2)e~ 2T dz .

:if{f}(V) =:7{g}(¥)

As the Fourier transform can be implemented to run in O(n logn) time, convolutions can
be computed efficiently by exploiting this property:

frg=F HF{f} Flg}}
(c) Let us consider the difference quotient

(fxg)lx+t)—(f*g)( gz +t—y) —glx—y)
¢ /f / dy.

Now taking the limit ¢ — 0 we have

(1 g)(0) = g U2 OE D = 200
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Remark: In order to interchange integration and limit, one needs some additional con-
ditions to hold (see Lebesgue’s dominated convergence theorem). The theorem requires
that ( ) ( )
gax+t—y) —glz—y
Fi(y) == f(y) ; :




convergences pointwise to a function Fy(y) — F'(y), and F} is dominated by an integrable
function g in the sense

|Fi(y)] < g(y), Vt, Vy.

The remaining equality follows from the above and commutativity of convolution:
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