Variational Methods for Computer Vision: Solution Sheet 1

Part I: Theory

1. Refresher: Multivariate analysis.

(a) i. $\nabla f=(x, y)^{\top}$
ii. $\nabla f=\left(x^{2}+y^{2}\right)^{-1 / 2}(x, y)^{\top}$
(b) i. $J=\left(\begin{array}{cc}\cos (\varphi) & -r \sin (\varphi) \\ \sin (\varphi) & r \cos (\varphi)\end{array}\right)$
ii. $J=\binom{-r \sin (t)}{r \cos (t)}$
(c) i. $\operatorname{div} f=0$
ii. $\operatorname{div} f=2$
(d) The solutions for the two functions from 1 c are:
i. curl $f=2$,
ii. curl $f=0$.

Proof for the curl of the gradient:

$$
\begin{array}{rlr}
\operatorname{curl}(\nabla f) & =\operatorname{curl}\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} \\
& =\frac{\partial}{\partial x} \frac{\partial f}{\partial y}-\frac{\partial}{\partial y} \frac{\partial f}{\partial x} \\
& =\frac{\partial}{\partial x} \frac{\partial f}{\partial y}-\frac{\partial}{\partial x} \frac{\partial f}{\partial y} \quad \text { (Symmetry of partial derivatives) } \\
& =0
\end{array}
$$

(e) i. Using the coordinate transformation from 1(b)i with det $J=r$, the area of a disk D_{R} of radius R can be calculated as

$$
\begin{aligned}
\iint_{D_{R}} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2 \pi} \int_{0}^{R} r \mathrm{~d} r \mathrm{~d} \varphi \\
& =2 \pi\left[\frac{1}{2} r^{2}\right]_{0}^{R} \\
& =\pi R^{2}
\end{aligned}
$$

ii. Using a parametrization like in 1 (b)ii, $\gamma_{R}:[0,2 \pi] \rightarrow \mathbb{R}^{2}, f(t)=(R \cos (t), R \sin (t))^{\top}$ with $\left\|\gamma_{R}^{\prime}\right\|_{2}=R$, the circumference of a circle with radius R can be calculated as

$$
\begin{aligned}
\int_{\gamma_{R}} \mathrm{~d} s & =\int_{0}^{2 \pi} R \mathrm{~d} \varphi \\
& =2 \pi R
\end{aligned}
$$

(f) First calculate the left-hand side of the divergence theorem:

$$
\begin{aligned}
\iint_{D_{R}} \operatorname{div} f \mathrm{~d} x \mathrm{~d} y & =\iint_{D_{R}} 2 \mathrm{~d} x \mathrm{~d} y \\
& =2 \pi R^{2}
\end{aligned}
$$

(Using 1(e)i)
For the right-hand side, first calculate the normal vector. The points on the boundary ∂D_{R} can be characterized by the zero set of $g(x, y)=x^{2}+y^{2}-R^{2}$. Calculating the gradient $\nabla g=(2 x, 2 y)^{\top}$ will give the direction of the normal n, and normalizing the gradient yields $n=\left(x^{2}+y^{2}\right)^{-1 / 2}(x, y)^{\top}=(x, y)^{\top} / R$. Now the integral becomes

$$
\begin{aligned}
\int_{\partial D_{R}}\langle f, n\rangle \mathrm{d} s & =\int_{\gamma_{R}} x^{2}+y^{2} \mathrm{~d} s \\
& =\int_{\gamma_{R}} R \mathrm{~d} s \\
& =2 \pi R^{2},
\end{aligned}
$$

(Using 1(e)ii)
which is equal to the left-hand side.
2. (a) i. Associativity:

$$
\begin{aligned}
((f * g) * h)(u) & =\int_{\mathbb{R}}(f * g)(x) h(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y\right) h(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f(y) g(x-y) h(u-x) \mathrm{d} y \mathrm{~d} x \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} f(y) g(x-y) h(u-x) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g(x-y) h(u-x) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g((x+y)-y) h(u-(x+y)) \mathrm{d} x \mathrm{~d} y \quad \text { (Translation invariance) } \\
& =\int_{\mathbb{R}} f(y) \int_{\mathbb{R}} g(x) h(u-y-x) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y)(g * h)(u-y) \mathrm{d} y \\
& =(f *(g * h))(u) .
\end{aligned}
$$

Remark: The translation invariance step can be seen as a special case of

$$
\int_{S} f(s) \mathrm{d} s=\int_{P} f(\phi(p))\left|\operatorname{det} J_{\phi}(p)\right| \mathrm{d} p
$$

in the following way:

$$
\begin{aligned}
\int_{\mathbb{R}} g(x-y) \cdot h(u-x) \mathrm{d} x & =\int_{\mathbb{R}}\left(g \circ \varphi_{1}^{y}\right)(x) \cdot\left(h \circ \varphi_{2}^{u}\right)(x) \mathrm{d} x \\
& =\int_{\varphi_{y}(\mathbb{R})}\left(g \circ \varphi_{1}^{y}\right)\left(\varphi_{y}(x)\right) \cdot\left(h \circ \varphi_{2}^{u}\right)\left(\varphi_{y}(x)\right) \underbrace{\operatorname{det} J_{\varphi_{y}} \mid}_{=1} \mathrm{~d} x \\
& =\int_{\mathbb{R}} g(x) h(u-y-x) \mathrm{d} x
\end{aligned}
$$

with $\varphi_{y}(x)=x+y, \varphi_{1}^{y}(x)=x-y, \varphi_{2}^{u}(x)=u-x$.
ii. Commutativity:

$$
\begin{aligned}
(f * g)(u) & :=\int_{\mathbb{R}} f(x) g(u-x) \mathrm{d} x \\
& =\int_{\varphi_{u}(\mathbb{R})} g\left(\varphi_{u}(x)\right) f\left(u-\varphi_{u}(x)\right)\left|\operatorname{det} J_{\varphi_{u}}\right| \mathrm{d} x, \\
& =\int_{\mathbb{R}} f(u-x) g(x) \mathrm{d} x \quad \text { with } \varphi_{u}(x)=u-x,\left|\operatorname{det} J_{\varphi_{u}}\right|=1, \varphi_{u}(\mathbb{R})=\mathbb{R}, \\
& =\int_{\mathbb{R}} g(x) f(u-x) \mathrm{d} x, \\
& =:(g * f)(u) .
\end{aligned}
$$

iii. Distributivity:

$$
\begin{aligned}
f *(g+h)(u) & =\int_{\mathbb{R}} f(x)(g+h)(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}} f(x) g(u-x)+f(x) h(u-x) \mathrm{d} x \\
& =\int_{\mathbb{R}} f(x) g(u-x) \mathrm{d} x+\int_{\mathbb{R}} f(x) h(u-x) \mathrm{d} x \\
& =(f * g+f * h)(u) .
\end{aligned}
$$

(b) We start with the definition of the Fourier transform:

$$
\begin{aligned}
\mathcal{F}\{f * g\}(\nu) & =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y\right) e^{-2 \pi i x \nu} \mathrm{~d} x \\
& =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(x-y) e^{-2 \pi i x \nu} \mathrm{~d} x\right) \mathrm{d} y .
\end{aligned}
$$

Introducing the substitution $z=x-y, \mathrm{~d} z=\mathrm{d} x$ we arrive at

$$
\begin{aligned}
\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(x-y) e^{-2 \pi i x \nu} \mathrm{~d} x\right) \mathrm{d} y & =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(z) e^{-2 \pi i(z+y) \nu} \mathrm{d} z\right) \mathrm{d} y \\
& =\int_{\mathbb{R}} f(y) e^{-2 \pi i y \nu} \int_{\mathbb{R}} g(z) e^{-2 \pi i z \nu} \mathrm{~d} z \mathrm{~d} y \\
& =\underbrace{\int_{\mathbb{R}} f(y) e^{-2 \pi i y \nu} \mathrm{~d} y}_{=: \mathcal{F}\{f\}(\nu)} \underbrace{\int_{\mathbb{R}} g(z) e^{-2 \pi i z \nu} \mathrm{~d} z}_{=: \mathcal{F}\{g\}(\nu)} .
\end{aligned}
$$

As the Fourier transform can be implemented to run in $\mathcal{O}(n \log n)$ time, convolutions can be computed efficiently by exploiting this property:

$$
f * g=\mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\} .
$$

(c) Let us consider the difference quotient

$$
\frac{(f * g)(x+t)-(f * g)(x)}{t}=\int_{\mathbb{R}} f(y) \frac{g(x+t-y)-g(x-y)}{t} \mathrm{~d} y .
$$

Now taking the limit $t \rightarrow 0$ we have

$$
\begin{aligned}
\frac{d}{d x}(f * g)(x) & =\lim _{t \rightarrow 0} \frac{(f * g)(x+t)-(f * g)(x)}{t} \\
& =\lim _{t \rightarrow 0} \int_{\mathbb{R}} f(y) \frac{g(x+t-y)-g(x-y)}{t} \mathrm{~d} y \\
& =\int_{\mathbb{R}} \lim _{t \rightarrow 0} f(y) \frac{g(x+t-y)-g(x-y)}{t} \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y)\left(\frac{d}{d x} g\right)(x-y) \mathrm{d} y \\
& =f * \frac{d g}{d x}=\frac{d g}{d x} * f .
\end{aligned}
$$

Remark: In order to interchange integration and limit, one needs some additional conditions to hold (see Lebesgue's dominated convergence theorem). The theorem requires that

$$
F_{t}(y):=f(y) \frac{g(x+t-y)-g(x-y)}{t},
$$

convergences pointwise to a function $F_{t}(y) \rightarrow F(y)$, and F_{t} is dominated by an integrable function g in the sense

$$
\left|F_{t}(y)\right| \leq g(y), \forall t, \forall y .
$$

The remaining equality follows from the above and commutativity of convolution:

$$
\frac{d}{d x}(f * g)=\frac{d}{d x}(g * f)=g * \frac{d f}{d x}=\frac{d f}{d x} * g .
$$

