## Variational Methods for Computer Vision: Solution Sheet 3

Exercise: November 7, 2016

## Part I: Theory

1. (a) Suppose  $x^*$  is a local but not a global minimizer. Then there exists a  $z \in \mathbb{R}^n$  with  $f(z) < f(x^*)$ . Consider the line segment

$$x_{\lambda} = \lambda z + (1 - \lambda)x^*, \lambda \in (0, 1).$$

By convexity we have:

$$f(x_{\lambda}) = f(\lambda z + (1 - \lambda)x^*) \le \lambda f(z) + (1 - \lambda)f(x^*) < \lambda f(x^*) + (1 - \lambda)f(x^*) = f(x^*).$$

 $\Rightarrow$  Any neighbourhood of  $x^*$  contains a point  $x_\lambda$  with  $f(x_\lambda) < f(x^*)$ , which is a contradiction to the assumption.

(b) Assume that  $x^*$  is a stationary point but not a global minimizer. Then there is a  $z \in \mathbb{R}^n$  with  $f(z) < f(x^*)$ , and

$$\langle \nabla f(x^*), z - x^* \rangle = \lim_{\epsilon \to 0} \frac{1}{\epsilon} (f(x^* + \epsilon(z - x^*)) - f(x^*))$$

$$\leq \lim_{\epsilon \to 0} \frac{1}{\epsilon} (\epsilon f(z) + (1 - \epsilon) f(x^*) - f(x^*))$$

$$= f(z) - f(x^*) < 0.$$
(1)

Thus  $\langle \nabla f(x^*), z - x^* \rangle \neq 0 \Rightarrow \nabla f(x^*) \neq 0 \Rightarrow x^*$  is not a stationary point.

2.  $f \text{ convex} \Rightarrow (\text{epi } f) \text{ convex}$ :

Take  $(u, a), (v, b) \in \text{epi } f$ . Then

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v)$$

$$< \lambda a + (1 - \lambda)b$$
(2)

Thus  $(\lambda u + (1 - \lambda)v, \lambda a + (1 - \lambda)b) = \lambda(u, a) + (1 - \lambda)(v, b) \in \text{epi } f$ .

(epi f) convex  $\Rightarrow f$  convex:

Let a = f(x), b = f(y). Then (x, a),  $(y, b) \in \text{epi } f$ . Since epi f is convex:

$$(\lambda x + (1 - \lambda)y, \lambda a + (1 - \lambda)b) \in \text{epi } f.$$

Thus we have convexity of f:

$$f(\lambda x + (1 - \lambda)y) < \lambda a + (1 - \lambda)b = \lambda f(x) + (1 - \lambda)f(y).$$

3. (a) A direct calculation shows:

$$h(\lambda x + (1 - \lambda)y) = \alpha f(\lambda x + (1 - \lambda)y) + \beta g(\lambda x + (1 - \lambda)y)$$

$$\leq \alpha \lambda f(x) + \alpha (1 - \lambda)f(y) + \beta \lambda g(x) + \beta (1 - \lambda)g(y)$$

$$= \lambda (\alpha f(x) + \beta g(x)) + (1 - \lambda)(\alpha f(y) + \beta g(y))$$

$$= \lambda h(x) + (1 - \lambda)h(y).$$
(4)

(b) We see that

epi 
$$f \cap \text{epi } g = \{(x, a) \mid f(x) \le a\} \cap \{(x, a) \mid g(x) \le a\}$$
  
=  $\{(x, a) \mid \max\{f(x), g(x)\} \le a\} = \text{epi } h$  (5)

Since the intersection of two convex sets is always convex, epi h is a convex set. This implies by the exercise 2 that h is also a convex function.

Proof that the intersection of two convex sets is convex (always  $\alpha \in (0,1)$ ):

$$S_1, S_2 \text{ convex} \Rightarrow (\forall x, y \in S_1 : \alpha x + (1 - \alpha)y \in S_1)$$
 (6)

$$\wedge (\forall x, y \in S_2 \colon \alpha x + (1 - \alpha)y \in S_2) \tag{7}$$

$$\Rightarrow \qquad (x, y \in S_1 \land x, y \in S_2 \tag{8}$$

$$\Rightarrow \alpha x + (1 - \alpha)y \in S_1 \land \alpha x + (1 - \alpha)y \in S_2) \tag{9}$$

$$\Rightarrow \forall x, y \in S_1 \cap S_2 \colon \alpha x + (1 - \alpha)y \in S_1 \cap S_2$$

$$\Rightarrow S_1 \cap S_2 \text{ convex.}$$

$$(10)$$

$$\Rightarrow$$
  $S_1 \cap S_2$  convex. (11)

(c) Counterexample:  $h(x) = \min\{(x-1)^2, (x+1)^2\}$  is clearly not convex.

4.

$$h''(x) = f(g(x))'' = \left(f'(g(x))g'(x)\right)'$$

$$= \underbrace{f''(g(x))}_{\geq 0} \underbrace{g'(x)g'(x)}_{\geq 0} + f'(g(x))\underbrace{g''(x)}_{\geq 0}$$
(12)

Thus  $h''(x) \ge 0$  if  $f'(g(x)) \ge 0$ . Hence f has to be a convex non-decreasing function.