Variational Methods for Computer Vision: Solution Sheet 6

Part I: Theory

1. Reminder: a linear map from X to Y is a function $L: X \rightarrow Y$ with the following properties
(a) $L(u+v)=L u+L v, \forall u, v \in X$;
(b) $L(\alpha u)=\alpha(L u), \quad \forall u \in X, \alpha \in \mathbb{R}$.

As the \tilde{e}_{i} form a basis, we can write $L e_{k}$ uniquely as

$$
L e_{k}=M_{1, k} \tilde{e}_{1}+\ldots+M_{m, k} \tilde{e}_{m}
$$

for all $k \in\{1, \cdots, n\}$. These scalars $M_{i, j}$ then completely determine the linear map L. The matrix

$$
M=\left(\begin{array}{ccc}
M_{1,1} & \cdots & M_{1, n} \\
\vdots & \ddots & \vdots \\
M_{m, 1} & \cdots & M_{m, n}
\end{array}\right)=\left(\begin{array}{ccc}
\mid & & \mid \\
{\left[L\left(e_{1}\right)\right]_{\tilde{e}}} & \cdots & {\left[L\left(e_{n}\right)\right] \tilde{e}} \\
\mid & & \mid
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

is then the so called matrix representation of L with respect to the bases $\left\{e_{1}, \cdots, e_{n}\right\}$ and $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{m}\right\}$.
We verify that for some $x=\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}$ we have

$$
[L(x)]_{\tilde{e}}=\sum_{j=1}^{n} \alpha_{j}\left[L\left(e_{j}\right)\right]_{\tilde{e}}=\sum_{j=1}^{n} \alpha_{j} M_{\cdot, j}=M x
$$

2. We start by the directional derivative, as on the last sheets:

$$
\begin{aligned}
\left.\frac{d E(u)}{d u}\right|_{h} & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}(E(u+\varepsilon h)-E(u)) \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{\Omega}(\mathcal{L}(u+\varepsilon h, \nabla(u+\varepsilon h), A(u+\varepsilon h))-\mathcal{L}(u, \nabla u, A u)) \mathrm{d} x \\
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{\Omega}(\mathcal{L}(u+\varepsilon h, \nabla u+\varepsilon \nabla h, A u+\varepsilon A h)-\mathcal{L}(u, \nabla u, A u)) \mathrm{d} x \\
& =\int_{\Omega}\left(\frac{\partial \mathcal{L}}{\partial u} h+\frac{\partial \mathcal{L}}{\partial \nabla u} \nabla h+\frac{\partial \mathcal{L}}{\partial A u}(A h)\right) \mathrm{d} x \\
& =\int_{\Omega}\left(\frac{\partial \mathcal{L}}{\partial u} h-\operatorname{div} \frac{\partial \mathcal{L}}{\partial \nabla u} h+A^{*} \frac{\partial \mathcal{L}}{\partial A u} h\right) \mathrm{d} x+\int_{\partial \Omega} h\left\langle\frac{\partial \mathcal{L}}{\partial \nabla u}, \nu\right\rangle \mathrm{d} s
\end{aligned}
$$

Hence the Euler-Lagrange equation is:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial u}-\operatorname{div} \frac{\partial \mathcal{L}}{\partial \nabla u}+A^{*} \frac{\partial \mathcal{L}}{\partial A u}=0, \text { for } x \in \Omega \\
& \left\langle\frac{\partial \mathcal{L}}{\partial \nabla u}, \nu,\right\rangle=0, \text { for } x \in \partial \Omega, \nu \text { is normal. }
\end{aligned}
$$

