Variational Methods for Computer Vision: Solution Sheet 7

Exercise: December 5, 2016

Part I: Theory
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(b) Start by joining two squares and using the result from 1a.
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More squares can be added in exactly the same manner; the line integrals on the interface
will always appear twice with different signs.

2. Consider the energies of regions €2 and )y before and after the merge operation:

Ebefore = /(I(m) — ul)zdx + /(I(JJ) — U2)2d$ + V’Cbefore’
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Here we assume that u1, vz and umergeq Optimize the energy given the respective region bound-
aries, i.e. they are the average intensity of the respective region (shown in the lecture). From
this it follows that
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which means Upergeq is @ weighted average of w; and up. Furthermore we are going to use the
identity
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which is true in particular for f = I and f = ;.



So the change in energy 6 E becomes:
OFE = Eatter — Ebefore
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