Variational Methods for Computer Vision: Solution Sheet 8

Part I: Theory

1. Recall from the lecture, that the Euler-Lagrange equation for the two-region Mumford-Shah functional for a curve $C:[0,1] \rightarrow \Omega \subset \mathbb{R}^{2}$ and image $I: \Omega \rightarrow \mathbb{R}$ are given by

$$
\begin{equation*}
\frac{d E}{d C}=\left(\left(I-u_{\mathrm{int}}\right)^{2}-\left(I-u_{\mathrm{ext}}\right)^{2}+\nu \kappa\right) n_{C} . \tag{1}
\end{equation*}
$$

Here, $u_{\text {int }}$ and $u_{\text {ext }}$ are the average intensities inside and outside the curve C, i.e.,

$$
\begin{equation*}
u_{\mathrm{int}}=\frac{\int_{\operatorname{int}(C)} I(x) \mathrm{d} x}{\int_{\text {int }(C)} \mathrm{d} x}, u_{\mathrm{ext}}=\frac{\int_{\operatorname{ext}(C)} I(x) \mathrm{d} x}{\int_{\operatorname{ext}(C)} \mathrm{d} x} . \tag{2}
\end{equation*}
$$

We will consider the curve evolution

$$
\begin{equation*}
\frac{\partial C}{\partial t}=-\frac{d E}{d C}=\left(-\left(I-u_{\mathrm{int}}\right)^{2}+\left(I-u_{\mathrm{ext}}\right)^{2}-\nu \kappa\right) n_{C} . \tag{3}
\end{equation*}
$$

Intuitively, we evolve the curve along the normal vector n_{C} depending on the sign of the term in the brackets.
(a) The curvature κ of a circle with radius r is $\kappa=\frac{1}{r}$. We can use this fact in calculating the Euler-Lagrange equations for the 2 different cases.

Case $r>1$:

$$
u_{\mathrm{ext}}=0, \quad, u_{\mathrm{int}}=\frac{\pi}{\pi r^{2}}=\frac{1}{r^{2}} .
$$

This leads to following inner term:

$$
\left(I-u_{\mathrm{ext}}\right)^{2}-\left(I-u_{\mathrm{int}}\right)^{2}-\nu \kappa=(0-0)^{2}-\left(0-\frac{1}{r^{2}}\right)^{2}-\frac{\nu}{r}=-\frac{1}{r^{4}}-\frac{\nu}{r} .
$$

Case $r \leq 1$:

$$
u_{\mathrm{ext}}=\frac{\pi-\pi r^{2}}{100-\pi r^{2}}, \quad u_{\mathrm{int}}=1
$$

A short computation shows:

$$
\begin{aligned}
\left(I-u_{\mathrm{ext}}\right)^{2}-\left(I-u_{\mathrm{int}}\right)^{2}-\nu \kappa & =\left(1-\frac{\pi-\pi r^{2}}{100-\pi r^{2}}\right)^{2}-0-\frac{\nu}{r} \\
& =\left(\frac{100-\pi}{100-\pi r^{2}}\right)^{2}-\frac{\nu}{r}
\end{aligned}
$$

(b) We see that the limits differ,

$$
\begin{aligned}
& \lim _{r \searrow 1}-\frac{1}{r^{4}}-\frac{\nu}{r}=-1-\nu \\
& \lim _{r \nearrow 1}-\frac{100-\pi}{100-\pi r^{2}}-\frac{\nu}{r}=\frac{100-\pi}{100-\pi}-\nu=1-\nu
\end{aligned}
$$

hence, the Gateâux derivative at $r=1$ is not continuous.
This shows that the original energy $E(C)$ is not differentiable, which can lead to convergence problems when using gradient descent-type algorithms as they technically require differentiability of the energy.
$\nu \leq 1$ is a good choice because it ensures that the curve evolves in the right direction for both cases $r>1$ and $r \leq 1$.
2. Let the curve $C:[0,1] \rightarrow \mathbb{R}^{2}$ be given by $C(s)=\left[\begin{array}{ll}x(s) & y(s)\end{array}\right]^{\top}$, and denote the derivative as $C^{\prime}(s)=\left[\begin{array}{ll}\dot{x}(s) & \dot{y}(s)\end{array}\right]^{\top}$. We rewrite the energy functional as the following

$$
\begin{equation*}
E(C)=\int_{0}^{1} g(C(s))\left\|C^{\prime}(s)\right\| \mathrm{d} s=\int_{0}^{1} L(x, y, \dot{x}, \dot{y}) \mathrm{d} s \tag{4}
\end{equation*}
$$

for a Lagrangian $L: \mathbb{R}^{4} \rightarrow \mathbb{R}$, given by $L(a, b, c, d)=g(a, b) \sqrt{c^{2}+d^{2}}$.
Following the lecture, and similar to the previous exercise sheets, the Euler-Lagrange equations are given by:

$$
\begin{aligned}
& \frac{\partial L}{\partial x}(x, y, \dot{x}, \dot{y})-\frac{d}{d s} \frac{\partial L}{\partial \dot{x}}(x, y, \dot{x}, \dot{y})=0 \\
& \frac{\partial L}{\partial y}(x, y, \dot{x}, \dot{y})-\frac{d}{d s} \frac{\partial L}{\partial \dot{y}}(x, y, \dot{x}, \dot{y})=0
\end{aligned}
$$

for $x:[0,1] \rightarrow \mathbb{R}, y:[0,1] \rightarrow \mathbb{R}, \dot{x}:[0,1] \rightarrow \mathbb{R}, \dot{y}:[0,1] \rightarrow \mathbb{R}$, at all $s \in[0,1]$. There are no boundary terms, as we assume C to be a closed curve.

For the partial derivatives of L we have

$$
\begin{aligned}
\frac{\partial L}{\partial x} & =\frac{\partial}{\partial x} g(x, y) \sqrt{\dot{x}^{2}+\dot{y}^{2}}=\frac{\partial}{\partial x} g(x, y) \frac{\dot{x}^{2}+\dot{y}^{2}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}} \\
\frac{\partial L}{\partial y} & =\frac{\partial}{\partial y} g(x, y) \sqrt{\dot{x}^{2}+\dot{y}^{2}}=\frac{\partial}{\partial y} g(x, y) \frac{\dot{x}^{2}+\dot{y}^{2}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}} \\
\frac{\partial L}{\partial \dot{x}} & =g(x, y) \frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}} \\
\frac{\partial L}{\partial \dot{y}} & =g(x, y) \frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}
\end{aligned}
$$

Denote by $t=\left[\begin{array}{ll}\dot{x} & \dot{y}\end{array}\right] \frac{1}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}$ the unit tangent vector of the curve, and by $n=\left[\begin{array}{ll}-\dot{y} & \dot{x}\end{array}\right] \frac{1}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}$ the unit normal vector. Then it can be verified by a simple calculation that

$$
\begin{equation*}
\frac{d}{d s} t=\kappa n \tag{*}
\end{equation*}
$$

where κ denotes the curvature. Taking the derivative with respect to s and using the product rule, we have for the last terms:

$$
\begin{aligned}
\frac{d}{d s} \frac{\partial L}{\partial \dot{x}} & =\left(\frac{d}{d s} g(x, y)\right) \frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}+g(x, y)\left(\frac{d}{d s} \frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}\right) \\
\frac{d}{d s} \frac{\partial L}{\partial \dot{y}} & =\left(\frac{d}{d s} g(x, y)\right) \frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}+g(x, y)\left(\frac{d}{d s} \frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}\right)
\end{aligned}
$$

This can be rewritten using $\left({ }^{*}\right)$ as

$$
\langle\nabla g(x, y), t\rangle\left[\begin{array}{cc}
\dot{x} & \dot{y}
\end{array}\right]^{\top}+g(x, y) \kappa n
$$

and the whole Euler-Lagrange equation becomes

$$
\begin{aligned}
& \nabla g(x, y) \sqrt{\dot{x}^{2}+\dot{y}^{2}}-\langle\nabla g(x, y), t\rangle\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]-g(x, y) \kappa n \\
& =\left[\begin{array}{l}
g_{x}(x, y) \\
g_{y}(x, y)
\end{array}\right] \sqrt{\dot{x}^{2}+\dot{y}^{2}}-\left[\begin{array}{l}
\dot{x}\left(\dot{x} g_{x}(x, y)+\dot{y} g_{y}(x, y)\right) \\
\dot{y}\left(\dot{x} g_{x}(x, y)+\dot{y} g_{y}(x, y)\right)
\end{array}\right] \frac{1}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}-g(x, y) \kappa n \\
& =\left[\begin{array}{l}
g_{x}(x, y) \\
g_{y}(x, y)
\end{array}\right] \frac{\dot{x}^{2}+\dot{y}^{2}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}-\left[\begin{array}{l}
\dot{x}\left(\dot{x} g_{x}(x, y)+\dot{y} g_{y}(x, y)\right) \\
\dot{y}\left(\dot{x} g_{x}(x, y)+\dot{y} g_{y}(x, y)\right)
\end{array}\right] \frac{1}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}-g(x, y) \kappa n \\
& =\left[\begin{array}{l}
\dot{y}^{2} g_{x}(x, y)-\dot{x} \dot{y} g_{y}(x, y) \\
\dot{x}^{2} g_{y}(x, y)-\dot{y} \dot{x} g_{x}(x, y)
\end{array}\right] \frac{1}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}-g(x, y) \kappa n \\
& =\langle\nabla g(x, y), n\rangle n \sqrt{\dot{x}^{2}+\dot{y}^{2}}-g(x, y) \kappa n
\end{aligned}
$$

Assuming an arc-length parametrization of the curve, i.e., $\sqrt{\dot{x}^{2}+\dot{y}^{2}}=1$, we arrive at

$$
\frac{d E}{d C}=(\langle\nabla g, n\rangle-g \kappa) n
$$

This leads to the final gradient descent curve evolution

$$
\frac{\partial C}{\partial t}=-\frac{d E}{d C}=(g \kappa-\langle\nabla g, n\rangle) n
$$

Remark: For a different derivation of the Euler-Lagrange equations, see [1, Appendix B].

References

[1] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. International journal of computer vision, 22(1):61-79, 1997.

