Variational Methods for Computer Vision: Solution Sheet 8

Exercise: December 12, 2016

Part I: Theory

1. Recall from the lecture, that the Euler-Lagrange equation for the two-region Mumford-Shah
functional for a curve C : [0,1] — © C R? and image I : Q — R are given by

dE

0 (I = win)® = (I — text)® + vK) nC. (1)

Here, uiy and uey are the average intensities inside and outside the curve C, i.e.,
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We will consider the curve evolution
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Intuitively, we evolve the curve along the normal vector nc depending on the sign of the term
in the brackets.

(a) The curvature ~ of a circle with radius r is kK = % We can use this fact in calculating the
Euler-Lagrange equations for the 2 different cases.
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This leads to following inner term:
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A short computation shows:
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(b) We see that the limits differ,
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hence, the Gateaux derivative at » = 1 is not continuous.

This shows that the original energy E(C) is not differentiable, which can lead to conver-
gence problems when using gradient descent-type algorithms as they technically require
differentiability of the energy.

v < 1is a good choice because it ensures that the curve evolves in the right direction for
bothcasesr > landr < 1.

2. Let the curve C': [0, 1] — R? be given by C(s) = [z(s) y(s)] ", and denote the derivative as
C'(s) = [#(s) 9(s)] " We rewrite the energy functional as the following
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for a Lagrangian L : R* — IR, given by L(a, b, c,d) = g(a,b)\v/c2 + d2.
Following the lecture, and similar to the previous exercise sheets, the Euler-Lagrange equations

are given by:
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forx:[0,1] = R,y :[0,1] = R, &:[0,1] - R,y :[0,1] — R, atall s € [0, 1]. There are no
boundary terms, as we assume C' to be a closed curve.

For the partial derivatives of L we have
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Denoteby t = [& ]

the unit tangent vector of the curve, andby n = [~y ]
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the unit normal vector. Then it can be verified by a simple calculation that
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where x denotes the curvature. Taking the derivative with respect to s and using the product
rule, we have for the last terms:
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This can be rewritten using (*) as
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and the whole Euler-Lagrange equation becomes
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Assuming an arc-length parametrization of the curve, i.e., \/12 4 32 = 1, we arrive at

o = (Vo) — gmin.

This leads to the final gradient descent curve evolution

ocC dE
5 - ac (g — (Vg,n))n.

Remark: For a different derivation of the Euler-Lagrange equations, see [1, Appendix B].
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