
Variational Methods for Computer Vision: Solution Sheet 8

Exercise: December 12, 2016

Part I: Theory

1. Recall from the lecture, that the Euler-Lagrange equation for the two-region Mumford-Shah
functional for a curve C : [0, 1]→ Ω ⊂ R2 and image I : Ω→ R are given by

dE

dC
=
(
(I − uint)

2 − (I − uext)
2 + νκ

)
nC . (1)

Here, uint and uext are the average intensities inside and outside the curve C, i.e.,

uint =

∫
int(C) I(x)dx∫

int(C) dx
, uext =

∫
ext(C) I(x)dx∫

ext(C) dx
. (2)

We will consider the curve evolution

∂C

∂t
= −dE

dC
=
(
−(I − uint)

2 + (I − uext)
2 − νκ

)
nC . (3)

Intuitively, we evolve the curve along the normal vector nC depending on the sign of the term
in the brackets.

(a) The curvature κ of a circle with radius r is κ = 1
r . We can use this fact in calculating the

Euler-Lagrange equations for the 2 different cases.

Case r > 1:

uext = 0, , uint =
π

πr2
=

1

r2
.

This leads to following inner term:

(I − uext)
2 − (I − uint)

2 − νκ = (0− 0)2 − (0− 1

r2
)2 − ν

r
= − 1

r4
− ν

r
.

Case r ≤ 1:

uext =
π − πr2

100− πr2
, uint = 1.

A short computation shows:

(I − uext)
2 − (I − uint)

2 − νκ =

(
1− π − πr2

100− πr2

)2

− 0− ν

r

=

(
100− π

100− πr2

)2

− ν

r
.
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(b) We see that the limits differ,

lim
r↘1
− 1

r4
− ν

r
= −1− ν,

lim
r↗1
− 100− π

100− πr2
− ν

r
=

100− π
100− π

− ν = 1− ν,

hence, the Gateâux derivative at r = 1 is not continuous.
This shows that the original energy E(C) is not differentiable, which can lead to conver-
gence problems when using gradient descent-type algorithms as they technically require
differentiability of the energy.
ν ≤ 1 is a good choice because it ensures that the curve evolves in the right direction for
both cases r > 1 and r ≤ 1.

2. Let the curve C : [0, 1]→ R2 be given by C(s) =
[
x(s) y(s)

]>, and denote the derivative as

C ′(s) =
[
ẋ(s) ẏ(s)

]>. We rewrite the energy functional as the following

E(C) =

∫ 1

0
g(C(s))‖C ′(s)‖ds =

∫ 1

0
L(x, y, ẋ, ẏ)ds, (4)

for a Lagrangian L : R4 → R, given by L(a, b, c, d) = g(a, b)
√
c2 + d2.

Following the lecture, and similar to the previous exercise sheets, the Euler-Lagrange equations
are given by:

∂L

∂x
(x, y, ẋ, ẏ)− d

ds

∂L

∂ẋ
(x, y, ẋ, ẏ) = 0,

∂L

∂y
(x, y, ẋ, ẏ)− d

ds

∂L

∂ẏ
(x, y, ẋ, ẏ) = 0,

for x : [0, 1]→ R, y : [0, 1]→ R, ẋ : [0, 1]→ R, ẏ : [0, 1]→ R, at all s ∈ [0, 1]. There are no
boundary terms, as we assume C to be a closed curve.

For the partial derivatives of L we have

∂L

∂x
=

∂

∂x
g(x, y)

√
ẋ2 + ẏ2 =

∂

∂x
g(x, y)

ẋ2 + ẏ2√
ẋ2 + ẏ2

∂L

∂y
=

∂

∂y
g(x, y)

√
ẋ2 + ẏ2 =

∂

∂y
g(x, y)

ẋ2 + ẏ2√
ẋ2 + ẏ2

∂L

∂ẋ
= g(x, y)

ẋ√
ẋ2 + ẏ2

∂L

∂ẏ
= g(x, y)

ẏ√
ẋ2 + ẏ2

Denote by t =
[
ẋ ẏ

]
1√

ẋ2+ẏ2
the unit tangent vector of the curve, and by n =

[
−ẏ ẋ

]
1√

ẋ2+ẏ2

the unit normal vector. Then it can be verified by a simple calculation that

d

ds
t = κn, (*)
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where κ denotes the curvature. Taking the derivative with respect to s and using the product
rule, we have for the last terms:

d

ds

∂L

∂ẋ
= (

d

ds
g(x, y))

ẋ√
ẋ2 + ẏ2

+ g(x, y)(
d

ds

ẋ√
ẋ2 + ẏ2

)

d

ds

∂L

∂ẏ
= (

d

ds
g(x, y))

ẏ√
ẋ2 + ẏ2

+ g(x, y)(
d

ds

ẏ√
ẋ2 + ẏ2

)

This can be rewritten using (*) as

〈∇g(x, y), t〉
[
ẋ ẏ

]>
+ g(x, y)κn,

and the whole Euler-Lagrange equation becomes

∇g(x, y)
√
ẋ2 + ẏ2 − 〈∇g(x, y), t〉

[
ẋ
ẏ

]
− g(x, y)κn

=

[
gx(x, y)
gy(x, y)

]√
ẋ2 + ẏ2 −

[
ẋ(ẋgx(x, y) + ẏgy(x, y))
ẏ(ẋgx(x, y) + ẏgy(x, y))

]
1√

ẋ2 + ẏ2
− g(x, y)κn

=

[
gx(x, y)
gy(x, y)

]
ẋ2 + ẏ2√
ẋ2 + ẏ2

−
[
ẋ(ẋgx(x, y) + ẏgy(x, y))
ẏ(ẋgx(x, y) + ẏgy(x, y))

]
1√

ẋ2 + ẏ2
− g(x, y)κn

=

[
ẏ2gx(x, y)− ẋẏgy(x, y)
ẋ2gy(x, y)− ẏẋgx(x, y)

]
1√

ẋ2 + ẏ2
− g(x, y)κn

= 〈∇g(x, y), n〉n
√
ẋ2 + ẏ2 − g(x, y)κn

Assuming an arc-length parametrization of the curve, i.e.,
√
ẋ2 + ẏ2 = 1, we arrive at

dE

dC
= (〈∇g, n〉 − gκ)n.

This leads to the final gradient descent curve evolution

∂C

∂t
= −dE

dC
= (gκ− 〈∇g, n〉)n.

Remark: For a different derivation of the Euler-Lagrange equations, see [1, Appendix B].

References
[1] Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. International journal of

computer vision, 22(1):61–79, 1997.

3


