Variational Methods for Computer Vision: Solution Sheet 11

Part I: Theory

1. For $u_{1}, u_{2}: \Omega \rightarrow \mathbb{R}$ and $\alpha \in(0,1)$, we have

$$
\begin{aligned}
E\left(\alpha u_{1}+(1-\alpha) u_{2}\right) & =\sup _{\varphi \in \mathcal{K}} \int_{\Omega}\left(\alpha u_{1}+(1-\alpha) u_{2}\right) \operatorname{div} \varphi \mathrm{d} x \\
& =\sup _{\varphi \in \mathcal{K}}\left[\alpha \int_{\Omega} u_{1} \operatorname{div} \varphi \mathrm{~d} x+(1-\alpha) \int_{\Omega} u_{2} \operatorname{div} \varphi \mathrm{~d} x\right] \\
& \leq \sup _{\varphi \in \mathcal{K}}\left[\alpha \int_{\Omega} u_{1} \operatorname{div} \varphi \mathrm{~d} x\right]+\sup _{\varphi \in \mathcal{K}}\left[(1-\alpha) \int_{\Omega} u_{2} \operatorname{div} \varphi \mathrm{~d} x\right] \\
& =\alpha \sup _{\varphi \in \mathcal{K}} \int_{\Omega} u_{1} \operatorname{div} \varphi \mathrm{~d} x+(1-\alpha) \sup _{\varphi \in \mathcal{K}} \int_{\Omega} u_{2} \operatorname{div} \varphi \mathrm{~d} x \\
& =\alpha E\left(u_{1}\right)+(1-\alpha) E\left(u_{2}\right)
\end{aligned}
$$

2. (a) ∇I is a 2×1 matrix, so its rank can be at most 1 . The same obviously applies to ∇I^{\top}. For the product of two matrices A, B, the rank satisfies the inequality $\operatorname{rank}(A B) \leq$ $\min (\operatorname{rank}(A), \operatorname{rank}(B))$. Hence, $\operatorname{rank}\left(\nabla I \nabla I^{\top}\right) \leq 1$.
Alternatively,

$$
\nabla I \nabla I^{\top}=\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right]
$$

If $I_{x}=0$ the first row is zero, if $I_{y}=0$ the second row is zero, in both cases it is clear that full rank is not possible. If $I_{x} \neq 0$ and $I_{y} \neq 0$, the first row and the second row only differ by a factor of I_{y} / I_{x}, which means they are linearly dependent and the matrix cannot have full rank.
Third alternative: The determinant is zero.
(b) Solving for the roots of the characteristic polynomial

$$
\operatorname{det}\left[\begin{array}{cc}
I_{x}^{2}-\lambda & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}-\lambda
\end{array}\right]
$$

yields the eigenvalues $\lambda_{1}=|\nabla I|^{2}, \lambda_{2}=0$. For the corresponding eigenvectors v_{i}, the linear system

$$
\left[\begin{array}{cc}
I_{x}^{2} & I_{x} I_{y} \\
I_{x} I_{y} & I_{y}^{2}
\end{array}\right] v_{i}=\lambda_{i} v_{i}
$$

has be solved. The resulting eigenvectors are $v_{1}=\nabla I$ and $v_{2}=\left[-I_{y}, I_{x}\right]^{\top}$ or multiples thereof. This means the eigenvectors are parallel and perpendicular to the image gradient.
3. The Euler-Lagrange equation for the i th component $(i=1,2)$ reads

$$
\frac{\partial E}{\partial v_{i}}=\frac{\partial \mathcal{L}}{\partial v_{i}}-\operatorname{div} \frac{\partial \mathcal{L}}{\partial \nabla v_{i}}=0
$$

With $\mathcal{L}=\left(I_{x} v_{1}+I_{y} v_{2}+I_{t}\right)^{2}+\alpha\left(\left|\nabla v_{1}\right|^{2}+\left|\nabla v_{2}\right|^{2}\right)$ one obtains

$$
\frac{\partial \mathcal{L}}{\partial v_{i}}=2 I_{i}\left(I_{x} v_{1}+I_{y} v_{2}+I_{t}\right)
$$

and

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \nabla v_{i}} & =2 \alpha \nabla v_{i} \\
\operatorname{div} \frac{\partial \mathcal{L}}{\partial \nabla v_{i}} & =2 \alpha \Delta v_{i}
\end{aligned}
$$

so the resulting equation is

$$
I_{i}\left(I_{x} v_{1}+I_{y} v_{2}+I_{t}\right)-\alpha \Delta v_{i}=0
$$

For a stationary point, the equation must be satisfied for both $i=1$ and $i=2$ simultaneously.

