

Deep Learning for Computer Vision

The Team

Dr. Laura Leal-Taixé

Prof. Dr. Matthias Niessner

Lecturers

Thomas Frerix

Tim Meinhardt

Ji Hou

Andreas Rössler

Deep L& Anying for Computer Vision

What is Computer Vision?

- First defined in the 60s in artificial intelligence groups
- "Mimic the human visual system"
- Center block of robotic intelligence

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100.

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Some decades later...

Oswald, Stühmer, Cremers., ECCV 2014.

One of the input images

Proposed (L = 2)

Proposed (L = 4)

Proposed (L = 8)

Proposed (L = 16)

Baseline (L = 270)

Baseline (L = 2)

Baseline (L = 4)

Baseline (L = 8)

Baseline (L = 16)

Möllenhof, Laude, Moeller, Lellmann, Cremers. CVPR 2016.

L. Leal-Taixé, A. Milan, I. Reid, S. Roth and K. Schindler. arXiv:1504.01942, 2015.

Engel, Schöps, Cremers., ECCV 2014.

BundleFusion: Dai, Niessner, Zollhoefer, Izadi, Theobalt, ToG 2017.

Face2Face: Thies, Zollhoefer, Stamminger, Theobalt, Niessner., CVPR 2016.

CV lectures at TUM

- Machine Learning for Robotics and Computer Vision
- Computer Vision 1: Variational Methods
- Computer Vision 2: Multiple View Geometry
- Convex optimization for Machine Learning and
 Computer Vision
- Probabilistic Graphical Models in Computer Vision
- Analysis of Three-Dimensional Shapes

Problem solving

Computational theory	Representation and algorithm	Hardware implementation
What is the goal of the computation, why is it appropriate, and what is the logic of the strat- egy by which it can be carried out?	How can this computa- tional theory be imple- mented? In particular, what is the representa- tion for the input and output, and what is the algorithm for the trans- formation?	How can the represen- tation and algorithm be realized physically?

Figure 1–4. The three levels at which any machine carrying out an informationprocessing task must be understood. David Marr.

Stages of vision

David Marr. Vision. 1982

Image classification

Image classification

Deep Learning for Computerwayion?

Deep Learning History

The empire strikes back

ILSVRC top-5 error on ImageNet

What has changed?

MNIST digit recognition dataset 10⁷ pixels used in training

2012 Krizhevsky et al.

ImageNet image recognition dataset 10¹⁴ pixels used in training

What made this possible?

Deep Learning and Computer Vision

Credits: Dr. Pont-Tuset, ETH Zurich

Deep Learning nowadays

AlphaGo

ever punch a cactus?

Emoticon suggestion

English – detected – 🌵 🌓 🔶	German -	
Deep Learning rocks	Deep Learning Felsen	

Machine translation

Deep Learning nowadays

Self-driving cars

Deep Learning nowadays

Healthcare, cancer detection

Deep Learning is everywhere

wrnch More & Moon BODY × LABS

Deep Learning is everywhere

IBM Research ebay & Spare 5 9 360

Deep Learning is everywhere

Deep Learning market

 [...]market research report Deep Learning Market [...] Global Forecasts to 2022", the deep learning market is expected to be worth USD 1,722.9 Million by 2022.

S. Caelles, K.K. Maninis, J. Pont-Tuset, L. Leal-Taixé, D. Cremers, and L. Van Gool. One-Shot Video Object Segmentation, CVPR 2017.

Sequence (length=L)

нмм

MGLSDGEWOLVLNVWAK MGLSDGEWQLVLNVWG KVEADLAGHGQDVLIR LFKGHPETLEKFDKFK HLKTEADMKASEDLKK HGNTVLTALGAILKKK (Bottlenose dolphin)

Golkov, Skwark, Golkov, Dosovitskiy, Brox, Meiler, Cremers., NIPS 2016

-0.1

-0.3

-0.4

Dosovitskiy, Fischer, Ilg, Haeusser, Hazirbas, Golkov, van der Smagt, Cremers, Brox. ICCV 15

Hazirbas, Leal-Taixé, Cremers. ICCV 2017 submission

ScanNet Stats: -Kinect-style RGB-D sensors -1513 scans of 3D environments -2.5 Mio RGB-D frames -Dense 3D, crowd-source MTurk labels -Annotations projected to 2D frames

ScanNet: Dai, Chang, Savva, Halber, Funkhouser, Niessner., CVPR 2017.

Photo

Walch, Hazirbas, Leal-Taixé, Sattler, Hilsenbeck, Cremers. ICCV 2017

Мар

Deep Learning for Computer Vision

About the lecture

- Theory: 13 lectures + special lectures
 - Every Tuesday (except in two days!!)
- Practice: 3 exercises, practical sessions
 - Every Thursday
- Project: 1 final project

https://vision.in.tum.de/teaching/ss2017/dl4cv

Grading system

- Theory: 13 lectures + special lectures
 - 60% of the final written exam
- Practice: 3 exercises, practical sessions
 - Bonus 0.3
- Project: 1 final project
 - 40% of the final written exam

https://vision.in.tum.de/teaching/WS2017/dl4cv

Theory lecture

- 3 lectures on Machine Learning Basics
- 3 lectures on Neural Networks
- 4 lectures on Convolutional Neural Networks
- 3 lectures on advanced topics (LSTM, GANs, RL)
- Special lectures: research, industry

https://vision.in.tum.de/teaching/ss2017/dl4cv

• Slides will be uploaded here:

https://vision.in.tum.de/teaching/ws2017/dl4cv/ coursematerial

• Password: DL4CVws17

• Please DO NOT distribute!

Practical exercises

- Topics: Linear classifiers, multinomial regression, twolayer neural net.
- Begin: 02.11
- End: 15.11

 Topics: Fully connected nets, dropout, batch normalization.

- Begin: 16.11
- End: 29.11

 Topics: Convolutional neural networks, large-scale project with PyTorch.

- Begin: 30.11
- End: 13.12

Practical exercises

- Thursday (02.11): introduction of the exercise
- Next Thursday (09.11): Q&A session
- Wednesday (15.11): Delivery deadline at midnight
- Thursday (16.11): solution is discussed and new exercise is presented

FIXED DEADLINES!

Python

- IMPORTANT: get familiar with Python!
- Exercise 0: starting 17.10 until 02.11

https://github.com/jrjohansson/scientificpython-lectures

Final project

- Introduction: 14.12
- Project proposal due date: 19.12
- Starting date: 21.12
- Midterm handout is due: tba
- Due date: tba
- Poster presentation: tba
- Groups of 4

Final information

- Questions regarding the syllabus, exercises or contents of the lecture, use Moodle!
- Slides and exercises will be posted on Moodle
- No recordings will be made!

• Questions regarding organization of the course:

dl4cv@vision.in.tum.de

See you next Thursday!

• Lecture 2 will be held on Thursday!

• When: Friday 19th of October

• Where: MI Hörsaal 1 – Math/Informatics building

The Team

