Tll

Lecture 2 Recap

Nearest Neighbor

distance

Nearest Neighbor

5-NN classifier

What is the performance on training data for NN classifier?
What classifier is more likely to perform best on test data?

Linear Regression

- Supervised learning
- Find a linear model that explains a target \mathbf{y} given the inputs \mathbf{X}

Linear Regression

- A linear model is expressed in the form

$$
\hat{y}_{i}=\sum_{j=1}^{d} x_{i j} \theta_{j}=x_{i} \frac{\theta_{1}}{}+x_{i 2} \theta_{2}+\cdots+x_{i d} \theta_{d}
$$

Tा

 Introduction to Neural Networks
Neural Network

- Linear score function $f=W x$

plane
Pa

On CIFAR-10

Neural Network

- Linear score function $f=W x$
- Neural network is a nesting of 'functions'
- 2-layers: $f=W_{2} \max \left(0, W_{1} x\right)$
- 3-layers: $f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)$
- 4-layers: $f=W_{4} \tanh \left(W_{3}, \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)\right)$
- 5-layers: $f=W_{5} \sigma\left(W_{4} \tanh \left(W_{3}, \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)\right)\right)$
- ... up to hundreds of layers

Neural Network

1-layer network: $f=W x$

$128 \times 128=16384$10

2-layer network: $f=W_{2} \max \left(0, W_{1} x\right)$

Neurons

impulses carried toward cell body

Neurons

Linear function: $W x+b$ Non-linearity (activation: $f(x)$

Every neuron computes: $f(W x+b)$

Net of Neurons

Neural Network

hidden layer

Neural Network

input layer
hidden layer 1 hidden layer 2 hidden layer 3

Neural Network

$$
\left.f=W_{3} \cdot\left(W_{2} \cdot\left(W_{1} \cdot x\right)\right)\right)
$$

Why activation functions?
Why not just concatenate?
Would be much cheaper to compute....

Activation Functions

Neural Network

Why organize a neural network into layers?

Neural Network

- Summary
- Given a dataset with ground truth training pairs $\left[x_{i} ; y_{i}\right]$
- Find optimal weights W using stochastic gradient descent, such that the loss function is minimized
- Compute gradients with backpropagation (use batchmode: more later)
- Iterate many times over training set (SGD; more later)

Artificial Neural Network vs Brain

Artificial neural networks: inspired but not even close to the brain! It's much more complex than simple linearity + activations Great for the media and news articles :)

Artificial Neural Network vs Brain

GOOGLE • 3 days ago

Google's artificial intelligence computer 'no longer constrained by limits of human knowledge'

Computational Graphs

Computational Graphs

- Neural network is a computational graph
- It has compute nodes
- It has edges that connect nodes
- It is directional
- It is organized in 'layers'

Computational Graphs

- $f(x, y, z)=(x+y) \cdot z$

Computational Graphs

Evaluation: Forward Pass

- $f(x, y, z)=(x+y) \cdot z \quad$ Initialization $x=1, y=-3, z=4$

The Flow of Gradients

Activation function

The Flow of Gradients

Activation function

Backpropagation

Backprop: Forward Pass

- $f(x, y, z)=(x+y) \cdot z \quad$ Initialization $x=1, y=-3, z=4$

Backprop: Backward Pass

$$
\begin{gathered}
f(x, y, z)=(x+y) \cdot z \\
\text { with } x=1, y=-3, z=4 \\
d=x+y \quad \frac{\partial d}{\partial x}=1, \frac{\partial d}{\partial y}=1 \\
f=d \cdot z \quad \frac{\partial f}{\partial d}=z, \frac{\partial f}{\partial z}=d
\end{gathered}
$$

What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$?

Backprop: Backward Pass

$$
f(x, y, z)=(x+y) \cdot z
$$

with $x=1, y=-3, z=4$
$d=x+y \quad \frac{\partial d}{\partial x}=1, \frac{\partial d}{\partial y}=1$
$f=d \cdot z \quad \frac{\partial f}{\partial d}=z_{1} \frac{\partial f}{\partial z}=d$

What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$?

Backprop: Backward Pass

$$
f(x, y, z)=(x+y) \cdot z
$$

with $x=1, y=-3, z=4$

What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$?

Backprop: Backward Pass

$$
\begin{gathered}
f(x, y, z)=(x+y) \cdot z \\
\text { with } x=1, y=-3, z=4
\end{gathered}
$$

$$
d=x+y \quad \frac{\partial d}{\partial x}=1, \frac{\partial d}{\partial y}=1
$$

$$
f=d \cdot z \quad \frac{\partial f}{\partial d}=z \quad \frac{\partial f}{\partial z}=d
$$

What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$?

Backprop: Backward Pass

$$
f(x, y, z)=(x+y) \cdot z
$$

with $x=1, y=-3, z=4$
$d=x+y \quad \frac{\partial d}{\partial x}=1, \frac{\partial d}{\partial y}=1$

$$
f=d \cdot z \quad \frac{\partial f}{\partial d}=z, \frac{\partial f}{\partial z}=d
$$

What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$?

$$
\begin{aligned}
& \text { Chain Rule: } \\
& \frac{\partial f}{\partial y}=\frac{\partial f}{\partial d} \cdot \frac{\partial d}{\partial y} \\
& \rightarrow \frac{\partial f}{\partial y}=4 \cdot 1=4
\end{aligned}
$$

Backprop: Backward Pass

$f(x, y, z)=(x+y) \cdot z$
with $x=1, y=-3, z=4$

$$
d=x+y \quad \frac{\partial d}{\partial x}=1 \frac{\partial d}{\partial y}=1
$$

-2
$f=d \cdot z \quad \frac{\partial f}{\partial d}=z_{1} \frac{\partial f}{\partial z}=d$

What is $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} ?$

$$
\begin{aligned}
& \text { Chain Rule: } \\
& \begin{array}{l}
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial d} \cdot \frac{\partial d}{\partial x} \\
\rightarrow \frac{\partial f}{\partial x}=4 \cdot 1=-4 \\
\frac{\partial f}{\partial x} \\
\hline
\end{array}
\end{aligned}
$$

The Flow of Gradients

Activation function

The Flow of Gradients

Activation function

Backprop

$$
f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}
$$

Backprop

Backprop

$f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}$
$w_{0} \xlongequal{2.00}$
$x_{0}-1.00$
$w_{1}=-2.00$
$x_{1}-2.00$
$b-3.00$

$$
\begin{array}{lll|ll}
f(x)=e^{x} & \rightarrow & \frac{\partial f}{\partial x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow \\
\frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
f_{a}(x)=a x & -> & \frac{\partial f_{a}}{\partial x}=a & f_{c}(x)=c+x & \rightarrow
\end{array} \frac{\partial f_{c}}{\partial x}=1
$$

Backprop

$f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}$
$w_{0} \xlongequal{2.00}$
$x_{0}-1.00$
$w_{1}=-2.00$
$x_{1}-2.00$
$b-3.00$

$$
\begin{array}{lll|ll}
f(x)=e^{x} & \rightarrow & \frac{\partial f}{\partial x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow \\
\frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
f_{a}(x)=a x & -> & \frac{\partial f_{a}}{\partial x}=a & f_{c}(x)=c+x & \rightarrow
\end{array} \frac{\partial f_{c}}{\partial x}=1
$$

Backprop

$f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}$
$x_{0} \xrightarrow{w_{0}} \stackrel{2.00}{-2.00}$
$x_{1} \xrightarrow{2.00}$

$$
\begin{array}{lll|ll|}
f(x)=e^{x} & -> & \frac{\partial f}{\partial x}=e^{x} & f(x)=\frac{1}{x} & -> \\
f_{a}(x)=a x & \rightarrow & \frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
\hline
\end{array}
$$

Backprop

$f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}$
$w_{0} \xlongequal{2.00}$
$x_{0}-1.00$
$w_{1}=-2.00$
$x_{1}-2.00$
$b-3.00$

$$
\begin{aligned}
& f(x)=e^{x} \quad->\frac{\partial f}{\partial x}=e^{x} \quad f(x)=\frac{1}{x} \quad \rightarrow \quad \frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
& f_{a}(x)=a x \quad->\quad \frac{\partial f_{a}}{\partial x}=a \quad f_{c}(x)=c+x \quad->\quad \frac{\partial f_{c}}{\partial x}=1
\end{aligned}
$$

Backprop

$$
f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}
$$

$$
x_{0}=2
$$

$$
w_{1} \xlongequal{-3.00} \quad\left(e^{-1}\right)(-0.53)=-0.20
$$

$$
\begin{array}{lll|ll}
\hline f(x)=e^{x} & \rightarrow & \frac{\partial f}{\partial x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow \\
\frac{\partial f}{\partial x}=- \\
f_{a}(x)=a x & -> & \frac{\partial f_{a}}{\partial x}=a & f_{c}(x)=c+x & \rightarrow \\
\frac{\partial f_{c}}{\partial x}=1
\end{array}
$$

Backprop

$$
f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}
$$

$x_{0} \xrightarrow{w_{0}} \stackrel{-2.00}{-2.00}$
$x_{1} \xrightarrow{-2.00} \xrightarrow{(-3.00}$

$$
\begin{array}{lllll}
f(x)=e^{x} & -> & \frac{\partial f}{\partial x}=e^{x} & f(x)=\frac{1}{x} & -> \\
\hline f_{a}(x)=a x & \rightarrow & \frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
\hline
\end{array}
$$

Backprop

$$
\begin{aligned}
& f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}} \\
& x_{0} \xrightarrow{w_{0} \xrightarrow{2.00}+2.00}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=e^{x} \quad->\frac{\partial f}{\partial x}=e^{x} \\
& f(x)=\frac{1}{x} \quad->\quad \frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
& f_{a}(x)=a x \quad->\quad \frac{\partial f_{a}}{\partial x}=a \\
& f_{c}(x)=c+x \quad->\frac{\partial f_{c}}{\partial x}=1
\end{aligned}
$$

Backprop

$$
\begin{aligned}
& f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}} \\
& x_{0} \\
& f(x, y)=x+y \quad->\quad \frac{\partial f}{\partial x}=1, \frac{\partial f}{\partial y}=1 \\
& 1 \cdot(0.2)=0.2 \\
& 1 \cdot(0.2)=0.2 \\
& \text { b } \quad \begin{array}{r}
-3.00 \\
\hline 0.20
\end{array} \\
& f(x)=e^{x} \quad->\frac{\partial f}{\partial x}=e^{x} \quad f(x)=\frac{1}{x} \quad->\quad \frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
& f_{a}(x)=a x \quad->\quad \frac{\partial f_{a}}{\partial x}=a \quad f_{c}(x)=c+x \quad->\quad \frac{\partial f_{c}}{\partial x}=1
\end{aligned}
$$

Backprop

$$
f\left(w_{0}, x_{0}, w_{1}, x_{1}, b\right)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+b\right)}}
$$

w_{0}
$x_{0} \underset{-0.20}{-1.00}$
-2.00
-2.00
0.20

$$
\begin{aligned}
f(x, y) & =x \cdot y \quad \rightarrow \quad \frac{\partial f}{\partial x}=y, \frac{\partial f}{\partial y}=x \\
& -3.00 \cdot(0.2)=-0.59
\end{aligned}
$$

b $\frac{-3.00}{0.20}$

$$
\begin{array}{lll|ll}
f(x)=e^{x} & -> & \frac{\partial f}{\partial x}=e^{x} & f(x)=\frac{1}{x} & -> \\
f_{a}(x)=a x & \rightarrow & \frac{\partial f}{\partial x}=-\frac{1}{x^{2}} \\
& & \\
\hline x & & & \\
f_{c}(x)=c+x & -> & \frac{\partial f_{c}}{\partial x}=1
\end{array}
$$

$$
\sigma(x)=\frac{1}{1+e^{-x}} \quad->\quad \frac{\partial \sigma(x)}{\partial x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=(1-\sigma(x)) \sigma(x)
$$

Backpropagation

What happens if there are multiple outputs in a compute node?

Backpropagation

What happens if there are loops in the graph?

Computational Graph

Implementation of Compute Graph

2) backwards

```
class ComputationalGraph(object):
    #...
    def forward(inputs):
        #1. [pass inputs to input nodes]
        #2. forward traverse the computational graph
        for node in self.graph.nodes_topologically_sorted():
            node.forward()
            # forward intermediates / loss
        return loss # final node returns loss
    def backward():
    for node in self.graph.nodes_topologically_sorted_reverse():
        node.backward() #apply chainrule
        # backward intermediate derivatives
    return inputs_gradients
```


Implementation of Nodes

- Forward and backward pass of MulNode


```
class MulNode(object):
    def forward(x,y):
        z=x*y
        return z
    def backward(dz, x, y):
        dx = y*dz # [dz/dx * dL/dz]
        dy = x*dz # [dz/dy * dL/dz]
        return [dx, dy]
```

all values are scalars

Implementation of Nodes

- Forward and backward pass of MulNode


```
class MulNode(object):
    def forward(x,y):
        z = x*y
        self.x = x
        self.y = y
        return z
        def backward(dz):
        dx = self.y*dz # [dz/dx * dL/dz]
        dy = self.x*dz # [dz/dy*dL/dz]
        return [dx, dy]
```

Cache results of forward pass
-> faster runtime for backward pass

目 Log．lua
目 LogSigmoid．lua
目 LogSoftMax．Iua
目 LookupTable．Iua
目 MM．lua
目 MSECriterion．lua
目 MV．Iua
目 MapTable．lua
目 MarginCriterion．lua
目 MarginRankingCriterion．lu
目 MaskedSelect．Iua
目 Max．lua
目 Maxout．lua
目 Mean．lua
目 Min．lua
目 MixtureTable．lua
目 Module．lua
目 Mul．lua
目 MulConstant．lua
国 MultiCriterion．lua
lazy init a year ago
Add THNN conversion of \｛ELU，LeakyReLU，LogSigmoid，LogSoftMax，Looku．．．a year ago
Fix shared function override for specific modules 4 months ago

戓 Reshape．lua	Better＿＿tostring＿＿and cleans tormatting	a year ago
目 Select．lua	Adds negative dim arguments	11 months ago
目 SelectTable．lua	allow SelectTable to accept input that contains tables of things that．．．	2 months ago
目 Sequential．lua	Improve error handling	a year ago
目 Sigmoid．lua	Add THNN conversion of \｛RReLU，Sigmoid，SmoothL1Criterion，SoftMax，So．．．	a year ago
目 SmoothL1Criterion．lua	Add THNN conversion of \｛RReLU，Sigmoid，SmoothL1Criterion，SoftMax，So．．．	a year ago
目 SoftMarginCriterion．lua	SoftMarginCriterion	a year ago
国 SoftMax．lua	Add THNN conversion of \｛RReLU，Sigmoid，SmoothL1Criterion，SoftMax，So．．．	a year ago
目 SoftMin．lua	nn．clearState	a year ago
国 SoftPlus．lua	Add THNN conversion of \｛RReLU，Sigmoid，SmoothL1Criterion，SoftMax，So．．．	a year ago
目SoftShrink．lua	Add THNN conversion of \｛oftShrink，Sqrt，Square，Tanh，Threshold\}	a year ago
目 SoftSign．lua	nn．clearState	a year ago
國 SparseJacobian．lua	Fix various unused variables in nn	3 years ago
目 SparseLinear．lua	Fixing sparse linear race condition	a year ago
目 SpatialAdaptiveAveragePooling．lua	Add SpatialAdaptiveAveragePooling．	4 months ago
目 SpatialAdaptiveMaxPooling．lua	Indices for nn．	7 months ago
目 SpatialAutoCropMSECriterion．lua	fix local／global var leaks	4 months ago

local MulConstant, parent = torch.class('nn.MulConstant', 'nn.Module')

function MulConstant: init(constant scalar,ip)

parent.__init(self)
assert(type(constant_scalar) == 'number', 'input is not scalar!')
self.constant scalar $=$ constant scalar
default for inplace is false
self.inplace $=$ ip or false
if (ip and type(ip) $\sim=$ 'boolean') then error('in-place flag must be boolean')
end
end
function MulConstant:updateOutput(input)
if self.inplace then

$$
f(x)=a X
$$

input:mul(self.constant_scalar)
self.output:set(input)
else
self.output:resizeAs(input)
self.output: copy(input)
self.output:mul(self.constant_scalar)
end
return self.output
function MulConstant:updateGradInput(input, gradoutput)
if self.gradInput then
if self.inplace then
gradoutput:mul(self.constant_scalar)
self.gradInput:set(gradoutput)
restore previous input value
input:div(self.constant_scalar)
else
self.gradInput:resizeAs(gradoutput)
Backward()
self.gradInput:mul(self.constant scalar)
end
return self.gradInput
end

Caffee：Layers（GitHub）

目 absval＿layer．cpp
目 absval＿layer．cu
目 accuracy＿layer．cpp
目 argmax＿layer．cpp
目 base＿conv＿layer．cpp
目 base＿data＿layer．cpp
目 base＿data＿layer．cu
目 batch＿norm＿layer．cpp
目 batch＿norm＿layer．cu
目 batch＿reindex＿layer．cpp
目 batch＿reindex＿layer．cu
目 bnll＿layer．cpp
目bnll＿layer．cu
目 concat＿layer．cpp
目 concat＿layer．cu
目 contrastive＿loss＿layer．cpp
目 contrastive＿loss＿layer．cu
目 conv＿layer．cpp
dismantle layer headers

2 years ago

2 years ago

目 concat＿layer．cu
目 contrastive＿loss＿layer．cpp
目 contrastive＿loss＿layer．cu
目 conv＿layer．cpp
目 conv＿layer．cu
目 cudnn＿conv＿layer．cpp
目 cudnn＿conv＿layer．cu
目 cudnn＿Icn＿layer．cpp
目 cudnn＿lcn＿layer．cu
目 cudnn＿Irn＿layer．cpp
目 cudnn＿Irn＿layer．cu
目 cudnn＿pooling＿layer．cpr
目 cudnn＿pooling＿layer．cu
目 cudnn＿relu＿layer．cpp
目 cudnn＿relu＿layer．cu
目 cudnn＿sigmoid＿layer．cpI
目 cudnn＿sigmoid＿layer．cu
目 cudnn＿softmax＿layer．cpl
目 cudnn＿softmax＿layer．cu

dismantle layer headers

dismantle layer headers
 dismantle layer headers
 dismantle layer headers

目 pooling＿layer．cpp
目 pooling＿layer．cu
目 power＿layer．cpp
目 power＿layer．cu
目 prelu＿layer．cpp
目 prelu＿layer．cu
目 reduction＿layer．cpp
目 reduction＿layer．cu
目relu＿layer．cpp
目 relu＿layer．cu
目 reshape＿layer．cpp
目 sigmoid＿cross＿entropy＿loss＿layer．cpp

目 sigmoid＿layer．cu
目 silence＿layer．cpp
目 silence＿layer．cu

2 years ago
2 years ago
2 years ago

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago
2 years ago

Caffe: Sigmoid_Layer

inline Dtype sigmoid(Dtype x) \{
return 1. / (1. $+\exp (-x))$;

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

emplate <typename Dtype>
void SigmoidLayer<Dtype>: :Forward_cpu(const vector<Blob<Dtype>*>\& bottom const vector<Blob<Dtype>*>\& top) \{
const Dtype* bottom_data $=$ bottom[0]->cpu_data();
Dtype* top_data $=$ top[0]->mutable_cpu_data();
const int count $=$ bottom[0]->count();
Forward()
for (int i = 0; i < count; ++i) \{
top_data[i] = sigmoid(bottom_data[i]);

\}

\}

template <typename Dtype>

void SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>\& top,
const vector<bool>\& propagate_down,
const vector<Blob<Dtype>*>\& bottom) \{
if (propagate_down[0]) \{
const Dtype* top_data $=$ top[0]->cpu_data();
const Dtype* top_diff $=$ top[0]->cpu_diff();
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const int count $=$ bottom[0]->count();
for (int $\mathrm{i}=0$; $\mathrm{i}<$ count; ++i) \{
const Dtype sigmoid_x = top_data[i];
bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x); $\quad \sigma^{\prime}(x)=(1-\sigma(x)) \sigma(x)$
\}
\}

Vectorized Operations

Activation function

Vectorized Operations

Jacobian Matrix:

Activation function

Vectorized Operations

Jacobian Matrix:

Activation function

Vectorized Operations

Jacobian Matrix:

Vectorized Operations

Jacobian Matrix:
How efficient is that:

- $\operatorname{dim}(\mathrm{J})=4096 \times 4096=16.78 \mathrm{mio}$
- Assuming floats (i.e., 4 bytes / elem)
- -> 64 MB

$$
\left[\begin{array}{ccc}
\frac{\partial z_{1}}{\partial y_{1}} & \cdots & \frac{\partial z_{1}}{\partial y_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial z_{n}}{\partial y_{1}} & \cdots & \frac{\partial z_{n}}{\partial y_{n}}
\end{array}\right]
$$

Typically, networks are run in batches:

- Assuming mini-batch size of 16
$-\quad->\operatorname{dim}(J)=(16 \cdot 4096) \times(16 \cdot 4096)=4295 \mathrm{mio}$
$-\quad->16.384 \mathrm{MB}=16 \mathrm{~GB}$

How to handle this?

Administrative Things

- Slides available on this website
http://vision.in.tum.de/teaching/ws2017/dl4Cv/coursematerial
- Password: DL4CVws17
- Please do not distribute!

Administrative Things

- First tutorial on November $2^{\text {nd }}$
- Introduction to exam system
- Next Lecture on November $7^{\text {th }}$
- Optimization and Regularization
- More on neural networks ©
- No tutorial this week!
- No more lecture this week!
- October $31^{\text {st }}$ is Halloween (also Day of Reformation)
- Tentative date for the exam: $\mathbf{1 3}{ }^{\text {th }}$ of February

See you next week!

