
Lecture 2 Recap



Nearest Neighbor

distance

NN classifier = dog



Nearest Neighbor

Courtesy of Stanford course cs231n

What is the performance on training data for NN classifier?

What classifier is more likely to perform best on test data?



Linear Regression

• Supervised learning

• Find a linear model that explains a target     given the 
inputs



1 bias

Linear Regression
• A linear model is expressed in the form



Introduction to 
Neural Networks



Neural Network
• Linear score function 𝑓 = 𝑊𝑥

Credit: Li/Karpathy/Johnson

On CIFAR-10

On ImageNet



Neural Network
• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊2max(0,𝑊1𝑥)

– 3-layers: 𝑓 = 𝑊3max(0,𝑊2max(0,𝑊1𝑥))

– 4-layers: 𝑓 = 𝑊4 tanh (W3, max(0,𝑊2max(0,𝑊1𝑥)))

– 5-layers: 𝑓 = 𝑊5𝜎(𝑊4 tanh(W3, max(0,𝑊2max(0,𝑊1𝑥))))

– … up to hundreds of layers 



Neural Network

2-layer network: 𝑓 = 𝑊2max(0,𝑊1𝑥)

𝑥
ℎ𝑊1

128 × 128 = 16384 1000

𝑓𝑊2

10

1-layer network: 𝑓 = 𝑊𝑥

𝑥
𝑊

128 × 128 = 16384

𝑓

10



Neurons

Credit: Li/Karpathy/Johnson



Neurons

𝑓(𝑊𝑥 + 𝑏)

Linear function: 𝑊𝑥 + 𝑏
Non-linearity (activation: 𝑓(𝑥)

Every neuron computes: 𝑓(𝑊𝑥 + 𝑏)
activation

𝑥1

𝑥2

𝑥3



Net of Neurons
𝑓(𝑊0,0𝑥 + 𝑏0,0)

𝑥1

𝑥2

𝑥3

𝑓(𝑊0,1𝑥 + 𝑏0,1)

𝑓(𝑊0,2𝑥 + 𝑏0,2)

𝑓(𝑊0,3𝑥 + 𝑏0,3)

𝑓(𝑊1,0𝑥 + 𝑏1,0)

𝑓(𝑊1,1𝑥 + 𝑏1,1)

𝑓(𝑊1,2𝑥 + 𝑏1,2)

𝑓(𝑊2,0𝑥 + 𝑏2,0 )



Neural Network

Credit: Li/Karpathy/Johnson



Neural Network



Neural Network

Why activation functions?

Why not just concatenate? 

Would be much cheaper to 
compute….

𝑓 = 𝑊3 ⋅ (𝑊2 ⋅ 𝑊1 ⋅ 𝑥 ))



Activation Functions
Sigmoid: 𝜎 𝑥 =

1

(1+𝑒−𝑥)

tanh: tanh 𝑥

ReLU: max 0, 𝑥

Leaky ReLU: max 0.1𝑥, 𝑥

Maxout max 𝑤1
𝑇𝑥 + 𝑏1, 𝑤2

𝑇𝑥 + 𝑏2

ELU 𝑓 𝑥 = ቊ
𝑥 𝑖𝑓 𝑥 > 0

𝛼 𝑒𝑥 − 1 𝑖𝑓 𝑥 ≤ 0

Parametric ReLU: max 𝛼𝑥, 𝑥



Neural Network

Why organize a neural network into layers?

.



Neural Network
• Summary

– Given a dataset with ground truth training pairs [𝑥𝑖; 𝑦𝑖], 

– Find optimal weights 𝑊 using stochastic gradient 
descent, such that the loss function is minimized

– Compute gradients with backpropagation (use batch-
mode; more later)

– Iterate many times over training set (SGD; more later)



Artificial Neural Network vs Brain

Artificial neural networks: inspired but not even close to the brain!
It’s much more complex than simple linearity + activations

Great for the media and news articles 



Artificial Neural Network vs Brain



Computational 
Graphs



Computational Graphs
• Neural network is a computational graph

– It has compute nodes

– It has edges that connect nodes

– It is directional

– It is organized in ‘layers’



Computational Graphs
• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

mult

sum 𝑓 𝑥, 𝑦, 𝑧



Computational Graphs



Evaluation: Forward Pass
• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧 Initialization 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4



The Flow of Gradients
A

ct
iv

at
io

ns

Activation function



The Flow of Gradients
A

ct
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at
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Activation function

gradients

“local gradients”



Backpropagation



Backprop: Forward Pass
• 𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧 Initialization 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4



Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?



Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

𝜕𝑓

𝜕𝑓

1



Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

1

𝜕𝑓

𝜕𝑧

−2
−2



Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

−2

𝜕𝑓

𝜕𝑑

4

1

−2



Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

1

4

𝜕𝑓

𝜕𝑦

4

𝜕𝑓

𝜕𝑦
=
𝜕𝑓

𝜕𝑑
⋅
𝜕𝑑

𝜕𝑦

Chain Rule:

→
𝜕𝑓

𝜕𝑦
= 4 ⋅ 1 = 4

4

−2



Backprop: Backward Pass

with 𝑥 = 1, 𝑦 = −3, 𝑧 = 4

mult

sum 𝑓 = −8

1

−3

4

𝑑 = −2

1

−3

4

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 ⋅ 𝑧

𝑑 = 𝑥 + 𝑦
𝜕𝑑

𝜕𝑥
= 1, 𝜕𝑑

𝜕𝑦
= 1

𝑓 = 𝑑 ⋅ 𝑧
𝜕𝑓

𝜕𝑑
= 𝑧, 𝜕𝑓

𝜕𝑧
= 𝑑

What is 𝜕𝑓
𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
?

1

−2

44

−2

𝜕𝑓

𝜕𝑥
=
𝜕𝑓

𝜕𝑑
⋅
𝜕𝑑

𝜕𝑥

Chain Rule:

→
𝜕𝑓

𝜕𝑥
= 4 ⋅ 1 = −4

𝜕𝑓

𝜕𝑥

4

4

4



The Flow of Gradients
A
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The Flow of Gradients
A

ct
iv

at
io
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Activation function

gradients

“local gradients”



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

+1



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

−
1

1.372
⋅ 1.00 = −0.53



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

1 ⋅ −0.53 = −0.53

−0.53



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

(𝑒−1) −0.53 = −0.20

−0.53−0.20



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

(−1) −0.20 = 0.20

−0.53−0.200.20



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦 ->
𝜕𝑓

𝜕𝑥
= 1, 

𝜕𝑓

𝜕𝑦
= 1

−0.53−0.200.20

1 ⋅ 0.2 = 0.2

1 ⋅ 0.2 = 0.2

0.20

0.20



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦 ->
𝜕𝑓

𝜕𝑥
= 1, 

𝜕𝑓

𝜕𝑦
= 1

−0.53−0.200.20

1 ⋅ 0.2 = 0.2

1 ⋅ 0.2 = 0.2

0.20

0.20

0.20

0.20



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

𝑓 𝑥, 𝑦 = 𝑥 ⋅ 𝑦 ->
𝜕𝑓

𝜕𝑥
= y, 

𝜕𝑓

𝜕𝑦
= 𝑥

−0.53−0.200.20

2 ⋅ 0.2 = 3.9

−1 ⋅ 0.2 = −0.2

0.20

0.20

0.20

0.20

−0.20

−0.39



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

𝑓 𝑥 = 𝑒𝑥 -> 𝜕𝑓

𝜕𝑥
= 𝑒𝑥

𝑓𝑎 𝑥 = 𝑎𝑥 -> 𝜕𝑓𝑎

𝜕𝑥
= 𝑎

𝑓 𝑥 =
1

𝑥
-> 𝜕𝑓

𝜕𝑥
= −

1

𝑥2

𝑓𝑐 𝑥 = 𝑐 + 𝑥 ->    𝜕𝑓𝑐
𝜕𝑥

= 1

1.00−0.53

𝑓 𝑥, 𝑦 = 𝑥 ⋅ 𝑦 ->
𝜕𝑓

𝜕𝑥
= y, 

𝜕𝑓

𝜕𝑦
= 𝑥

−0.53−0.200.20

−3.00 ⋅ 0.2 = −0.59

−2.00 ⋅ 0.2 = −0.39

0.20

0.20

0.20

0.20

−0.20

−0.39

−0.39

−0.59



Backprop
𝑓 𝑤0, 𝑥0, 𝑤1, 𝑥1, 𝑏 =

1

1 + 𝑒−(𝑤0𝑥0+𝑤1𝑥1+𝑏)

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

1.00−0.53

𝜎 𝑥 =
1

1+𝑒−𝑥
-> 𝜕𝜎 𝑥

𝜕𝑥
=

𝑒−𝑥

1+𝑒−𝑥 2 = 1 − 𝜎 𝑥 𝜎(𝑥)

−0.53−0.200.20

1 − 0.73 ⋅ 0.73

0.20

0.20

0.20

0.20

−0.20

−0.39

sigmoid function

Why use a compute graph 
in the first place?

−0.39

−0.59



Backpropagation

What happens if there are 
multiple outputs in a 

compute node?

∗



Backpropagation

What happens if there are 
loops in the graph?

∗ +

loop



Computational Graph

Credit: Li/Karpathy/Johnson

Combining nodes:
Linear activation node + hinge loss + regularization



Implementation of Compute Graph

1) forward

2) backwards



Implementation of Nodes
• Forward and backward pass of MulNode

∗

𝑥

𝑦

𝑧

Issue?

all values are scalars



Implementation of Nodes
• Forward and backward pass of MulNode

∗

𝑥

𝑦

𝑧

Cache results of forward pass 
-> faster runtime for backward pass

all values are scalars



Torch: Layers (GitHub)



Torch: MulConstant

𝑓 𝑥 = 𝑎𝑋

Forward()

Backward()

Init()



Caffee: Layers (GitHub)



Caffe: Sigmoid_Layer
𝜎 𝑥 =

1

1 + 𝑒−𝑥

Forward()

Backward()

𝜎′ 𝑥 = 1 − 𝜎 𝑥 𝜎(𝑥)



Vectorized Operations
A

ct
iv

at
io

ns

Activation function

gradients

“local gradients”

What if x,y,z, 
are vectors?



A
ct

iv
at

io
ns

Activation function

gradients

“local gradients”

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

Vectorized Operations

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

These are now
vectors



A
ct

iv
at

io
ns

Activation function

gradients

“local gradients”

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

Vectorized Operations

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

Gradients are 
now also vectors!



A
ct

iv
at

io
ns

Activation function

gradients

“local gradients”

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

Vectorized Operations

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

Need derivative of 
every output element

w.r.t.
every input element!



A
ct

iv
at

io
ns

Activation function

gradients

“local gradients”

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

Vectorized Operations

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

Jacobian Matrix:
𝜕𝑧1
𝜕𝑥1

⋯
𝜕𝑧1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑥1

⋯
𝜕𝑧𝑛
𝜕𝑥𝑛



A
ct

iv
at

io
ns

Activation function

gradients

“local gradients”

𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

Vectorized Operations

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

Jacobian Matrix:
𝜕𝑧1
𝜕𝑦1

⋯
𝜕𝑧1
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑦1

⋯
𝜕𝑧𝑛
𝜕𝑦𝑛



Vectorized Operations
Jacobian Matrix:
𝜕𝑧1
𝜕𝑦1

⋯
𝜕𝑧1
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑦1

⋯
𝜕𝑧𝑛
𝜕𝑦𝑛

What is the size 
of the Jacobian?

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑛]

Assuming input and output ∈ ℝ4096

𝑥 ∈ ℝ4096

𝑧 ∈ ℝ4096

dim J = 4096 × 4096



Vectorized Operations
Jacobian Matrix:
𝜕𝑧1
𝜕𝑦1

⋯
𝜕𝑧1
𝜕𝑦𝑛

⋮ ⋱ ⋮
𝜕𝑧𝑛
𝜕𝑦1

⋯
𝜕𝑧𝑛
𝜕𝑦𝑛

How efficient is that:
- dim J = 4096 × 4096 = 16.78mio
- Assuming floats (i.e., 4 bytes / elem)
- -> 64 MB

Typically, networks are run in batches:
- Assuming mini-batch size of 16 
- -> dim J = 16 ⋅ 4096 × 16 ⋅ 4096 = 4295 mio
- -> 16.384MB = 16GB

How to handle this?



Administrative Things
• Slides available on this website

http://vision.in.tum.de/teaching/ws2017/dl4cv/coursematerial

• Password: DL4CVws17

• Please do not distribute!

http://vision.in.tum.de/teaching/ws2017/dl4cv/coursematerial


Administrative Things
• First tutorial on November 2nd

– Introduction to exam system

• Next Lecture on November 7th

– Optimization and Regularization
– More on neural networks 

• No tutorial this week! 
• No more lecture this week!
• October 31st is Halloween (also Day of Reformation)
• Tentative date for the exam: 13th of February



See you next week!


