

Lecture 3 recap

Exercise 1: Loss cheat sheet

• Softmax loss or cross-entropy loss

Beyond linear

• Linear score function f = Wx

On CIFAR-10

On ImageNet

Beyond linear

1-layer network:
$$f = \mathbf{W}\mathbf{x}$$

128×128 10

LINEAR TRANSFORMATION

Beyond linear

Kernel trick

1-layer network:
$$f = \mathbf{W}\mathbf{x}$$

$$f = \mathbf{W}\phi(\mathbf{x})$$

Neural networks

From the broad family of functions ϕ we learn the best representation by learning the parameters θ

Neural Network

Also SVM is in this category

Neural Network

Neural Network

• Linear score function f = Wx

• Neural network is a nesting of 'functions'

- 2-layers:
$$f = W_2 \max(0, W_1 x)$$

- 3-layers: $f = W_3 \max(0, W_2 \max(0, W_1 x))$
- 4-layers: $f = W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x)))$
- 5-layers: $f = W_5 \sigma(W_4 \tanh(W_3, \max(0, W_2 \max(0, W_1 x))))$
- ... up to hundreds of layers

Computational Graphs

- Neural network is a computational graph
 - It has compute nodes
 - It has edges that connect nodes
 - It is directional
 - It is organized in 'layers'

Backprop

The importance of gradients

• All optimization schemes are based on computing gradients

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

• One can compute gradients analytically but what if our function is too complex?

Break down gradient computation

Computational graphs

$$J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta})$$

Computational graphs

• These graphs can be huge!

Convolution
 AvgPool
 MaxPool
 Concat
 Dropout
 Fully connected
 Softmax

Another view of GoogLeNet's architecture.

An example: chain rule

An example: the chain rule

An example: the chain rule

• Each node is only interested in its own inputs and outputs

An example: the chain rule

• Each node is only interested in its own inputs and outputs

The flow of the gradients

Activation function

The flow of the gradients

Activation function

The flow of the gradients

Many many many many of these nodes form a neural network

NEURONS

• Each one has its own work to do

FORWARD AND BACKWARD PASS

Optimization

Optimization

$$\boldsymbol{\theta}_{ML} = \arg \max_{\boldsymbol{\theta}} p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta})$$

- Complex function that cannot be derived in closed form
- Fast way to find a minimum
- Scales to large datasets

Gradient descent

Gradient steps

• From derivative to gradient

df(x)

dx

Direction of greatest increase of $\nabla_{\mathbf{x}} f(\mathbf{x})$ the function

• Gradient steps in direction of negative gradient

Gradient steps

• From derivative to gradient

df(x)

dx

Direction of greatest
 increase of the function

• Gradient steps in direction of negative gradient

Gradient steps

• From derivative to gradient

df(x)

dx

Direction of greatest increase of $\nabla_{\mathbf{x}} f(\mathbf{x})$ the function

• Gradient steps in direction of negative gradient

Numerical gradient

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Approximate
- Slow evaluation

Analytical gradient

• Exact and fast

Remember Linear Regression

$$f(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$f(\boldsymbol{\theta}) = \frac{1}{n} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$
Analytical
$$2\mathbf{X}^T \mathbf{X}\boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y}$$
gradient

Gradient descent for least squares

$$f(\boldsymbol{\theta}) = \frac{1}{n} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \ 2\mathbf{X}^T \mathbf{X} \boldsymbol{\theta} - 2\mathbf{X}^T \mathbf{y}$$

Convex, always converges to the same solution

Non-linear least squares

• Not necessarily convex

Stochastic Gradient Descent

• If we have m training samples we need to compute the gradient for all of them which is $\mathcal{O}(m)$

• Gradient is an expectation, and so it can be approximated with a small number of samples

Minibatch
$$\mathbb{B} = \{x^1, \cdots, x^{m'}\}$$

Epoch = complete pass through all the data

Convergence

Stochastic gradient descent

Gradient

SGD $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$

convenience ©

42

Momentum update

- Designed to accelerate training
- Define a new term called velocity ${\bf v}$

$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

• The velocity accumulates gradients

SGD
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

Polyack 1964

Momentum update

$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i) \qquad \boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

Step will be largest when a sequence of gradients all point to the same direction

Momentum update

• Can it overcome local minima?

Nesterov's momentum

• Look-ahead momentum

$$\widetilde{\boldsymbol{\theta}}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_k$$
$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

SGD
$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k - \epsilon
abla_{oldsymbol{ heta}} L(oldsymbol{ heta}_k, \mathbf{x}^i, \mathbf{y}^i)$$
 Sutskever 2013, Nesterov 1983

Nesterov's momentum

• Look-ahead momentum

$$\widetilde{\boldsymbol{\theta}}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_k$$
$$\mathbf{v}_{k+1} = \alpha \mathbf{v}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \mathbf{v}_{k+1}$$

SGD
$$oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k - \epsilon
abla_{oldsymbol{ heta}} L(oldsymbol{ heta}_k, \mathbf{x}^i, \mathbf{y}^i)$$
 Sutskever 2013, Nesterov 1983

Convergence

More parameters...

$$\mathbf{v}_{k+1} = \boldsymbol{\alpha} \mathbf{v}_k - \boldsymbol{\epsilon} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\widetilde{\theta}}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \boldsymbol{\epsilon} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

Can we relax the dependence on the hyperparameters?

• Adapt the learning rate of all model parameters

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i})$$

$$\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{g} \odot \mathbf{g}$$

Element-wise multiplication

Diagonal matrix with entries that are the square of the gradient

• Adapt the learning rate of all model parameters

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{k+1}, \mathbf{x}^i, \mathbf{y}^i)$$

 $\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{g} \odot \mathbf{g}$

• Adapt the learning rate of all model parameters

nı

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

• Theory: more progress in regions where the function is more flat

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - rac{\epsilon}{\delta + \sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}$$

• Practice: for most deep learning models, accumulating gradients from the beginning results in excessive decrease in the effective learning rate

Convergence

RMSProp and Adadelta

• Improvements to AdaGrad to avoid the problem of diminishing learning rate

• Decaying factor applied to the accumulation of gradients

• Old gradients are slowly forgotten

Convergence

Adam

• Optimizer of choice for most neural networks

• Adam = adaptive moments

• It can be seen as an RMSProp with momentum

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

Second order moment

$$\mathbf{r}_{k+1} = \rho_2 \mathbf{r}_k + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$$

 $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \frac{\hat{\mathbf{s}}}{\delta + \sqrt{\hat{\mathbf{r}}_{k+1}}_{58}}$

$$\mathbf{r}_{k+1} = \mathbf{r}_k + \mathbf{g} \odot \mathbf{g}$$
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \frac{\epsilon}{\delta + \sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}$$

AdamWe can consider it as
momentumGradient
$$\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$
We can consider it as
momentumFirst order moment $\mathbf{s}_{k+1} = \rho_1 \mathbf{s}_k + (1 - \rho_1) \mathbf{g}$ Second order moment $\mathbf{r}_{k+1} = \rho_2 \mathbf{r}_k + (1 - \rho_2) \mathbf{g} \odot \mathbf{g}$ Unbias the moments $\hat{\mathbf{s}}_{k+1} = \frac{\mathbf{s}_{k+1}}{1 - \rho_1}$ $\hat{\mathbf{r}}_{k+1} = \frac{\mathbf{r}_{k+1}}{1 - \rho_2}$ Update step $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \frac{\hat{\mathbf{s}}}{\delta + \sqrt{\hat{\mathbf{r}}_{k+1}}}$ 59

Adam

Unbias the moments
$$\hat{\mathbf{s}}_{k+1} = \frac{\mathbf{s}_{k+1}}{1-\rho_1}$$
 $\hat{\mathbf{r}}_{k+1} = \frac{\mathbf{r}_{k+1}}{1-\rho_2}$

• Both moments are initialized to zero, which means that specially at the beginning they have a tendency to converge to zero

$$\rho_1 = 0.9 \qquad \rho_2 = 0.999$$

Go-to optimizer

So far

Classic optimizers: SGM, Momentum, Nesterov's
momentum

 Adaptive learning rates: AdaGrad, Adadelta, RMSProp and Adam

Can we get rid of the learning rate?

Importance of the learning rate

Jacobian and Hessian

- $\frac{df(x)}{dx}$ • Derivative $\mathbf{f}: \mathbb{R} \to \mathbb{R}$ • Gradient $\mathbf{f}: \mathbb{R}^m \to \mathbb{R} \quad \nabla_{\mathbf{x}} f(\mathbf{x}) \quad \left(\frac{df(x)}{dx_1}, \frac{df(x)}{dx_2}\right)$
 - $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^n \quad \mathbf{J} \in \mathbb{R}^{n \times m}$ • Jacobian
 - $\mathbf{f}: \mathbb{R}^m \to \mathbb{R} \qquad \mathbf{H} \in \mathbb{R}^{m \times m} \quad \begin{array}{c} \text{SECOND} \\ \text{DERIVATIVE} \end{array}$ Hessian

• Approximate our function by a second-order Taylor series expansion

$$L(\boldsymbol{\theta}) \approx L(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^T \mathbf{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

$$\int \int \mathbf{First \ derivative} \qquad \text{Second \ derivative} \qquad (curvature)$$

• SGD (green)

 Newton's method exploits the curvature to take a more direct route

• Differentiate and equate to zero

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

We got rid of the learning rate!

SGD
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i)$$

• Differentiate and equate to zero

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

Parameters of a network (millions)

k

Number of elements in the Hessian k^2

Computational complexity of inversion per iteration $\mathcal{O}(k^3)$

Only small networks can be trained with this method 67

$$J(\boldsymbol{\theta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

Can you apply Newton's method for linear regression? What do you get as a result?

BFGS and L-BFGS

- Broyden-Fletcher-Goldfarb-Shanno algorithm
- Belongs to the family of quasi-Newton methods
- Have an approximation of the inverse of the Hessian

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

- BFGS $\mathcal{O}(n^2)$
- Limited memory: L-BFGS $\mathcal{O}(n)$

Which, what and when?

• Standard: Adam

• Fall-back option: SGD with momentum

• L-BFGS if you can do full batch updates (forget applying it to minibatches!!)

Next lecture

• NO LECTURE on November 14th!

 Thursday November 16th: exercise 1 solution and presentation of exercise 2