Lecture 3 recap

Exercise 1: Loss cheat sheet

- Softmax loss or cross-entropy loss

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{k} e^{s_{k}}}\right) \quad \begin{aligned}
& \text { Score of the } \\
& \text { ground truth class } \\
& \text { Scores or } \\
& \text { predictions }
\end{aligned}
$$

Beyond linear

- Linear score function $f=W x$

plane

On CIFAR-10

Beyond linear

1-layer network: $f=\mathbf{W} \mathbf{x}$

128×128
10
LINEAR
TRANSFORMATION

Beyond linear

1-layer network: $f=\mathbf{W x}$

$128 \times 128 \quad 10$
LINEAR
TRANSFORMATION

Kernel trick

1-layer network: $f=\mathbf{W} \mathbf{x}$

$$
f=\mathbf{W} \phi(\mathbf{x})
$$

kernel
$128 \times 128 \quad 10$

Neural networks

1-layer network: $f=\mathbf{W} \mathbf{x}$

$$
f=\mathbf{W} \phi(\mathbf{x} ; \boldsymbol{\theta})
$$

128×128

10

parameters
From the broad family of functions ϕ we learn the best representation by learning the parameters $\boldsymbol{\theta}$

Neural Network

hidden layer

Neural Network

input layer
hidden layer 1 hidden layer 2 hidden layer 3

Depth

Neural Network

- Linear score function $f=W x$
- Neural network is a nesting of 'functions'
- 2-layers: $f=W_{2} \max \left(0, W_{1} x\right)$
- 3-layers: $f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)$
- 4-layers: $f=W_{4} \tanh \left(W_{3}, \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)\right)$
- 5-layers: $f=W_{5} \sigma\left(W_{4} \tanh \left(W_{3}, \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)\right)\right)$
- ... up to hundreds of layers

Computational Graphs

- Neural network is a computational graph
- It has compute nodes
- It has edges that connect nodes
- It is directional
- It is organized in 'layers'

Backprop

The importance of gradients

- All optimization schemes are based on computing gradients

$$
\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})
$$

- One can compute gradients analytically but what if our function is too complex?
- Break down gradient computation

Backpropagation

Computational graphs

$$
J(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})+\lambda R(\boldsymbol{\theta})
$$

Computational graphs

- These graphs can be huge!

Another view of GoogleNet's architecture.

An example: forward pass

$$
f=x * y+z \quad \text { Initialization } \quad x=2, y=-5, z=3
$$

An example: backward pass

(x-s)

An example: chain rule

$$
f=x * y+z
$$

An example: chain rule $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial d} \frac{\partial d}{\partial x}$

 $f=x * y+z$

An example: the chain rule

An example: the chain rule

- Each node is only interested in its own inputs and outputs

An example: the chain rule

- Each node is only interested in its own inputs and outputs

The flow of the gradients

Activation function

The flow of the gradients

Activation function

The flow of the gradients

- Many many many many of these nodes form a neural network

NEURONS

- Each one has its own work to do

FORWARD AND BACKWARD PASS

Optimization

Optimization

$$
\boldsymbol{\theta}_{M L}=\arg \max _{\theta} p(\mathbf{y} \mid \mathbf{X}, \boldsymbol{\theta})
$$

- Complex function that cannot be derived in closed form
- Fast way to find a minimum
- Scales to large datasets

ता

Gradient descent

Following the slope

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Following the slope

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Following the slope

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Gradient steps

- From derivative to gradient

$$
\frac{d f(x)}{d x} \longrightarrow \nabla_{\mathbf{x}} f(\mathbf{x})
$$

Direction of greatest increase of the function

- Gradient steps in direction of negative gradient
$\nabla_{\mathrm{x}} f(\mathrm{x}) \mathrm{T}_{\mathrm{x}}$

$$
\mathbf{x}^{\prime}=\mathbf{x}-\epsilon \nabla_{\mathbf{x}} f(\mathbf{x})
$$

Learning rate

Gradient steps

- From derivative to gradient

Direction of greatest increase of the function

- Gradient steps in direction of negative gradient

$$
\mathbf{x}^{\prime}=\mathbf{x}-\epsilon \nabla_{\mathbf{x}} f(\mathbf{x})
$$

SMALL Learning rate

Gradient steps

- From derivative to gradient

Direction of greatest increase of the function

- Gradient steps in direction of negative gradient

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{x}-\epsilon \nabla_{\mathbf{x}} f(\mathbf{x}) \\
& \text { LARGE Learning rate }
\end{aligned}
$$

Convergence

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Numerical gradient

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Approximate
- Slow evaluation

Analytical gradient

- Exact and fast

Remember Linear

$$
f(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{y}_{i}-y_{i}\right)^{2}
$$

$$
f(\boldsymbol{\theta})=\frac{1}{n}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y})^{T}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y})
$$

Analytical $\longrightarrow 2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}-2 \mathbf{X}^{T} \mathbf{y}$ gradient

Gradient descent for least squares

$$
\begin{array}{r}
f(\boldsymbol{\theta})=\frac{1}{n}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y})^{T}(\mathbf{X} \boldsymbol{\theta}-\mathbf{y}) \\
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon 2 \mathbf{X}^{T} \mathbf{X} \boldsymbol{\theta}-2 \mathbf{X}^{T} \mathbf{y}
\end{array}
$$

Convex, always converges to the same solution

Non-linear least squares

- Not necessarily convex

Stochastic Gradient Descent

- If we have m training samples we need to compute the gradient for all of them which is $\mathcal{O}(m)$
- Gradient is an expectation, and so it can be approximated with a small number of samples

$$
\text { Minibatch } \quad \mathbb{B}=\left\{x^{1}, \cdots, x^{m^{\prime}}\right\}
$$

Epoch = complete pass through all the data

Convergence

Stochastic gradient descent

Gradient

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \frac{1}{\frac{1}{m} \sum_{i} \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)}
$$

SGD $\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$
Ignore the sum for
convenience ©

Momentum update

- Designed to accelerate training
- Define a new term called velocity \mathbf{v}

$$
\begin{aligned}
& \mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
\end{aligned}
$$

- The velocity accumulates gradients

SGD $\quad \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \quad$ Polyack 1964

Momentum update

$$
\mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \quad \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
$$

Step will be largest when a sequence of gradients all point to the same direction

Momentum update

- Can it overcome local minima?

Nesterov's momentum

- Look-ahead momentum

$$
\begin{aligned}
& \widetilde{\boldsymbol{\theta}}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k} \\
& \mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
\end{aligned}
$$

SGD $\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$ Sutskever 2013, Nesterov 1983

Nesterov's momentum

- Look-ahead momentum

$$
\begin{aligned}
& \widetilde{\boldsymbol{\theta}}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k} \\
& \mathbf{v}_{k+1}=\alpha \mathbf{v}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}+\mathbf{v}_{k+1}
\end{aligned}
$$

SGD $\quad \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$ Sutskever 2013, Nesterov 1983

Convergence

More parameters...

$$
\begin{aligned}
\mathbf{v}_{k+1} & =\alpha \gamma_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\widetilde{\boldsymbol{\theta}}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
\boldsymbol{\theta}_{k+1} & =\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)
\end{aligned}
$$

Can we relax the dependence on the hyperparameters?

AdaGrad update

- Adapt the learning rate of all model parameters

$$
\mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)
$$

$$
\mathbf{r}_{k+1}=\mathbf{r}_{k}+\mathbf{g} \odot \mathbf{g} \quad \begin{aligned}
& \text { Element-wise } \\
& \text { multiplication }
\end{aligned}
$$

Diagonal matrix with entries that are the square of the gradient

AdaGrad update

- Adapt the learning rate of all model parameters

$$
\begin{aligned}
& \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k+1}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}+\mathbf{g} \odot \mathbf{g}
\end{aligned}
$$

Accumulating gradients

AdaGrad update

- Adapt the learning rate of all model parameters

$$
\begin{aligned}
& \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
& \mathbf{r}_{k+1}=\mathbf{r}_{k}+\mathbf{g} \odot \mathbf{g} \\
& \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\frac{\epsilon}{\delta+\sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}
\end{aligned}
$$

Small constant for numerical stability

AdaGrad update

- Theory: more progress in regions where the function is more flat

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\frac{\epsilon}{\delta+\sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g}
$$

- Practice: for most deep learning models, accumulating gradients from the beginning results in excessive decrease in the effective learning rate

Convergence

RMSProp and Adadelta

- Improvements to AdaGrad to avoid the problem of diminishing learning rate
- Decaying factor applied to the accumulation of gradients
- Old gradients are slowly forgotten

Convergence

Adam

- Optimizer of choice for most neural networks
- Adam = adaptive moments
- It can be seen as an RMSProp with momentum

AdaGrad

$$
\begin{array}{l|c}
\mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) & \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right) \\
\mathbf{r}_{k+1}=\mathbf{r}_{k}+\mathbf{g} \odot \mathbf{g} & \text { Second order moment } \\
\mathbf{r}_{k+1}=\rho_{2} \mathbf{r}_{k}+\left(1-\rho_{2}\right) \mathbf{g} \odot \mathbf{g} \\
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\frac{\epsilon}{\delta+\sqrt{\mathbf{r}_{k+1}}} \odot \mathbf{g} & \boldsymbol{\theta}_{k}-\epsilon \frac{\text { © }}{\delta+\sqrt{\hat{\mathbf{r}}_{k+1}}} 5
\end{array}
$$

Gradient $\quad \mathbf{g}=\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$ momentum

First order moment

$$
\mathbf{s}_{k+1}=\rho_{1} \mathbf{s}_{k}+\left(1-\rho_{1}\right) \mathbf{g}
$$

Second order moment

$$
\mathbf{r}_{k+1}=\rho_{2} \mathbf{r}_{k}+\left(1-\rho_{2}\right) \mathbf{g} \odot \mathbf{g}
$$

Unbias the moments

$$
\hat{\mathbf{s}}_{k+1}=\frac{\mathbf{s}_{k+1}}{1-\rho_{1}} \quad \hat{\mathbf{r}}_{k+1}=\frac{\mathbf{r}_{k+1}}{1-\rho_{2}}
$$

Update step

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \frac{\hat{\mathbf{s}}}{\delta+\sqrt{\hat{\mathbf{r}}_{k+1}}}
$$

Adam

Unbias the moments

$$
\hat{\mathbf{s}}_{k+1}=\frac{\mathbf{s}_{k+1}}{1-\rho_{1}} \quad \hat{\mathbf{r}}_{k+1}=\frac{\mathbf{r}_{k+1}}{1-\rho_{2}}
$$

- Both moments are initialized to zero, which means that specially at the beginning they have a tendency to converge to zero

$$
\rho_{1}=0.9 \quad \rho_{2}=0.999
$$

Go-to optimizer

So far

- Classic optimizers: SGM, Momentum, Nesterov's momentum
- Adaptive learning rates: AdaGrad, Adadelta, RMSProp and Adam

Can we get rid of the learning rate?

Importance of the learning rate

Jacobian and Hessian

- Derivative
- Gradient
- Jacobian
- Hessian
$\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}$
$\frac{d f(x)}{d x}$
$\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}$
$\nabla_{\mathbf{x}} f(\mathbf{x}) \quad\left(\frac{d f(x)}{d x_{1}}, \frac{d f(x)}{d x_{2}}\right)$
$\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad \mathbf{J} \in \mathbb{R}^{n \times m}$
$\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R} \quad \mathbf{H} \in \mathbb{R}^{m \times m}$

Newton's method

- Approximate our function by a second-order Taylor series expansion

$$
L(\boldsymbol{\theta}) \approx L\left(\boldsymbol{\theta}_{0}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{0}\right)+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{T} \underset{\uparrow}{\mathbf{H}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
$$

First derivative Second derivative (curvature)

Newton's method

- SGD (green)
- Newton's method exploits the curvature to take a more direct route

Newton's method

- Differentiate and equate to zero

We got rid of the learning rate!

SGD $\quad \boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)$

Newton's method

- Differentiate and equate to zero

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \quad \text { Update step }
$$

Parameters of a network (millions) k

Number of elements in the Hessian
k^{2}

Computational
complexity of inversion per iteration $\mathcal{O}\left(k^{3}\right)$

Only small networks can be trained with this method

Newton's method

$$
J(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})^{T}(\mathbf{y}-\mathbf{X} \boldsymbol{\theta})
$$

Can you apply Newton's method for linear regression? What do you get as a result?

BFGS and L-BFGS

- Broyden-Fletcher-Goldfarb-Shanno algorithm
- Belongs to the family of quasi-Newton methods
- Have an approximation of the inverse of the Hessian

$$
\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{0}-\mathbf{H}^{-1} \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})
$$

- BFGS $\mathcal{O}\left(n^{2}\right)$
- Limited memory: L-BFGS $\mathcal{O}(n)$

Which, what and when?

- Standard: Adam
- Fall-back option: SGD with momentum
- L-BFGS if you can do full batch updates (forget applying it to minibatches!!)

Next lecture

- NO LECTURE on November $14^{\text {th! }}$
- Thursday November 16 ${ }^{\text {th }}$: exercise 1 solution and presentation of exercise 2

