
Lecture 3 recap
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Exercise 1: Loss cheat sheet

• Softmax loss or cross-entropy loss

Scores or 
predictions

Li = � log
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Score of the 
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2



Beyond linear

• Linear score function 𝑓 = 𝑊𝑥

Credit: Li/Karpathy/Johnson

On CIFAR-10

On ImageNet 3



Beyond linear

LINEAR 
TRANSFORMATION

1-layer network:
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Kernel trick

1-layer network:
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Neural networks

1-layer network:

x
W

128×128

f

10

f = Wx

kernel

f = W�(x;✓)

parameters

From the broad family of functions     we learn the 
best representation by learning the parameters✓

�
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Neural Network

Credit: Li/Karpathy/Johnson

Also SVM 
is in this 
category

�
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Neural Network

Depth
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Neural Network

• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊-max(0,𝑊2𝑥)
– 3-layers: 𝑓 = 𝑊4max(0,𝑊- max(0,𝑊2𝑥))
– 4-layers: 𝑓 = 𝑊5 tanh	(W4,max(0,𝑊- max(0,𝑊2𝑥)))	
– 5-layers: 𝑓 = 𝑊:𝜎(𝑊5 tanh	(W4,max(0,𝑊- max(0,𝑊2𝑥))))	
– … up to hundreds of layers 
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Computational Graphs
• Neural network is a computational graph

– It has compute nodes

– It has edges that connect nodes

– It is directional

– It is organized in ‘layers’
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Backprop
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The importance of gradients

• All optimization schemes are based on computing 
gradients

• One can compute gradients analytically but what if 
our function is too complex?

• Break down gradient computation Backpropagation

Rumelhart 1986
13



Computational graphs

J(�) = (y � X�)T (y � X�) + �R(�)

mult

LOSS

sum
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Computational graphs

• These graphs can be huge!
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An example: forward pass

mult

sum

Initialization
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An example: backward pass
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An example: chain rule
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An example: the chain rule
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An example: the chain rule

• Each node is only interested in its own inputs and 
outputs

mult
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An example: the chain rule

• Each node is only interested in its own inputs and 
outputs

mult
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The flow of the gradients
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The flow of the gradients
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The flow of the gradients

• Many many many many of these nodes form a 
neural network

• Each one has its own work to do

NEURONS

FORWARD AND BACKWARD PASS
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Optimization
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Optimization

• Complex function that cannot be derived in closed 
form

• Fast way to find a minimum
• Scales to large datasets

�ML = arg max
�

p(y|X, �)
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Gradient descent
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Following the slope

Optimum

Initialization
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Following the slope

Optimum

Initialization
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Following the slope

Optimum

Initialization

Follow the 
slope of the 
DERIVATIVE
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Gradient steps

• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

Learning rate
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Gradient steps

• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

SMALL Learning rate
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Gradient steps

• From derivative to gradient

• Gradient steps in direction of negative gradient

Direction of 
greatest 

increase of 
the function

LARGE Learning rate
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Convergence

Optimum

Initialization

What is the 
gradient when 
we reach this 
point?

Not guaranteed 
to reach the 

optimum 35



Numerical gradient

• Approximate
• Slow evaluation
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Analytical gradient

• Exact and fast 

�J(�)

��
= 2XT X� � 2XT y = 0Analytical 

gradient

Remember Linear 
Regression
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�J(�)

��
= 2XT X� � 2XT y = 0

Gradient descent for least squares

Convex, always converges to the same solution
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Non-linear least squares

• Not necessarily convex
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Stochastic Gradient Descent

• If we have      training samples we need to compute 
the gradient for all of them which is 

• Gradient is an expectation, and so it can be 
approximated with a small number of samples

Minibatch

Epoch = complete pass through all the data
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Convergence

41



Stochastic gradient descent

Gradient

LossModel

SGD

Ignore the sum for 
convenience J 42



Momentum update

• Designed to accelerate training
• Define a new term called velocity

• The velocity accumulates gradients

SGD                                                                               Polyack 1964 43



Momentum update

Image: Goodfellow et al.

Step will be largest when 
a sequence of gradients 

all point to the same 
direction
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Momentum update

• Can it overcome local minima?

45



Nesterov’s momentum

• Look-ahead momentum

SGD                                                               Sutskever 2013, Nesterov 1983 46



Nesterov’s momentum

• Look-ahead momentum

47SGD                                                               Sutskever 2013, Nesterov 1983



Convergence
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More parameters…

Can we relax the dependence on the hyperparameters?  
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AdaGrad update

• Adapt the learning rate of all model parameters

Diagonal matrix with 
entries that are the 

square of the gradient

Element-wise 
multiplication

Duchi 2011
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AdaGrad update

• Adapt the learning rate of all model parameters

Accumulating gradients
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AdaGrad update

• Adapt the learning rate of all model parameters

Small constant for 
numerical stability

Learning rate
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AdaGrad update

• Theory: more progress in regions where the function 
is more flat

• Practice: for most deep learning models, 
accumulating gradients from the beginning results in 
excessive decrease in the effective learning rate
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Convergence
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RMSProp and Adadelta

• Improvements to AdaGrad to avoid the problem of 
diminishing learning rate

• Decaying factor applied to the accumulation of 
gradients

• Old gradients are slowly forgotten

Zeiler, 2012. Hinton, 2012
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Convergence
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Adam

• Optimizer of choice for most neural networks

• Adam = adaptive moments

• It can be seen as an RMSProp with momentum

Kingma and Ba 2014
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AdaGrad Adam

Second order moment
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Adam

Second order moment

Gradient

Unbias the moments

Update step

First order moment

We can consider it as 
momentum 
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Adam

• Both moments are initialized to zero, which means 
that specially at the beginning they have a tendency 
to converge to zero

Unbias the moments

Go-to optimizer
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So far

• Classic optimizers: SGM, Momentum, Nesterov’s
momentum

• Adaptive learning rates: AdaGrad, Adadelta, RMSProp
and Adam

Can we get rid of the learning rate?
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Importance of the learning rate
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Jacobian and Hessian

• Derivative

• Gradient

• Jacobian

• Hessian
SECOND 

DERIVATIVE
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Newton’s method

• Approximate our function by a second-order Taylor 
series expansion

https://en.wikipedia.org/wiki/Taylor_series

First derivative Second derivative 
(curvature)
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Newton’s method

• SGD (green)

• Newton’s method exploits 
the curvature to take a 
more direct route

Image from Wikipedia
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Newton’s method

• Differentiate and equate to zero

Update step

SGD

We got rid of the learning rate!
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Newton’s method

• Differentiate and equate to zero

Update step

Parameters 
of a network 

(millions)

Number of 
elements in 
the Hessian

Computational 
complexity of 

inversion per iteration

Only small networks can be trained with this method 67



Newton’s method

J(�) = (y � X�)T (y � X�) + �R(�)

Can you apply Newton’s 
method for linear 

regression? What do you 
get as a result?

68



BFGS and L-BFGS
• Broyden-Fletcher-Goldfarb-Shanno algorithm
• Belongs to the family of quasi-Newton methods
• Have an approximation of the inverse of the Hessian

• BFGS
• Limited memory: L-BFGS
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Which, what and when?

• Standard: Adam

• Fall-back option: SGD with momentum

• L-BFGS if you can do full batch updates (forget 
applying it to minibatches!!)
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Next lecture

• NO LECTURE on November 14th!

• Thursday November 16th: exercise 1 solution and 
presentation of exercise 2

71


