
Lecture 5 Recap
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Beyond linear

1-layer network:

x
W

128×128

f
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Neural Network

Depth

W
id

th
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Output functions
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Neural networks
What is the shape of 
this function?

Loss 
(Softmax, 

Hinge)

Prediction
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Sigmoid for binary predictions

x0

x1

x2

X

0

Can be 
interpreted as 
a probability

1

p(yi = 1|xi,✓)

✓0

✓1

✓2

�(x) =
1

1 + e�x
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Logistic regression

• Optimize using gradient descent

• Saturation occurs only when the model already has 
the right answer

C(✓) = � log p(y|X,✓)

Referred to as cross-entropy

= �
nX

i=1

yi log(⇧i) + (1� yi) log(1�⇧i)
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Softmax formulation

• What if we have multiple classes?

⇧2 =
exi✓2

exi✓1 + exi✓2

x0

x1

x2

X

Softmax
X

⇧1 =
exi✓1

exi✓1 + exi✓2

8



Softmax formulation

• Softmax

• Softmax loss (ML) 

p(yi|x,✓) =
ex✓i

nP
k=1

ex✓k

Li = � log

✓
esyiP
k e

sk

◆

exp

normalize
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Activation functions
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Sigmoid �(x) =
1

1 + e�x

@L

@�

@�

@x

@L

@x
=

@�

@x

@L

@�

Forward

x = 6
Saturated 

neurons kill the 
gradient flow
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Problem of positive output

w1

w2

More on zero-
mean data later
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tanh

Zero-
centered

Still saturates

Still saturates

LeCun 1991 13



Rectified Linear Units (ReLU)

Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU
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Parametric ReLU

Does not die

�(x) = max(↵x, x)

One more parameter 
to backprop into

He 2015 15



Maxout units

Generalization 
of ReLUs

Linear 
regimes

Does not 
die

Does not 
saturate

Increase of the number of parameters 16



Data pre-processing

For images subtract the mean image (AlexNet) or per-
channel mean (VGG-Net) 17



Weight initialization

18



Initialization is extremely important

Optimum

Initialization

Not guaranteed 
to reach the 

optimum
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Small random numbers

• Gaussian with zero mean and standard deviation 0.01

• Let us see what happens: 
– Network with 10 layers with 500 neurons each
– Tanh as activation functions
– Input unit Gaussian data
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Small random numbers

Forward

Input
Last 
layer

Activations 
become zero
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Big random numbers

Everything 
is saturated
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Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Glorot 2010 23



Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Independent

Zero mean
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Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Identically distributed
25



Xavier initialization

• Gaussian with zero mean, but what standard 
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Variance gets multiplied by the number of inputs 26



Xavier initialization

• How to ensure the variance of the output is the same 
as the input?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

1

V ar(w) =
1

n

27



Xavier initialization

Mitigates the effect of  
activations going to 

zero
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Xavier initialization with ReLU
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ReLU kills half of the data
V ar(w) =

2

n

30He 2015



ReLU kills half of the data
V ar(w) =

2

n

He 2015

It makes a huge difference!
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Tips and tricks

• Use ReLU and Xavier/2 initialization
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Batch normalization
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Batch normalization

• Wish: unit Gaussian activations
• Solution: let’s do it

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

D = #features

N
= 

m
in

i-
b

at
ch

 s
iz

e
dimension

34Ioffe and Szegedy 2015



Batch normalization

• In each dimension of the features, you have a unit 
gaussian

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

D = #features

N
= 

m
in

i-
b

at
ch

 s
iz

e
dimension

35Ioffe and Szegedy 2015



Batch normalization

• In each dimension of the features, you have a unit 
Gaussian

• Is it ok to treat dimensions separately? Shown 
empirically that even if features are not decorrelated, 
convergence is still faster with this method

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

Differentiable function so 
we can backprop

through it….

36Ioffe and Szegedy 2015



Batch normalization

• A layer to be applied after Fully 
Connected (or Convolutional) layers 
and before non-linear activation 
functions

• Is it a good idea to have all unit 
Gaussians before tanh?

37Ioffe and Szegedy 2015



Batch normalization

• Normalize

• Allow the network to change the 
range

Ioffe and Szegedy 2015

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

y(k) = �(k)x̂(k) + �(k)

backprop

�(k) =
q

Var[x(k)]

�(k) = E[x(k)]

The network can 
learn to undo the 

normalization
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BN for Exercise 2
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Regularization

40



Regularization

• Any strategy that aims to

Lower 
validation error

Increasing 
training error
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Weight decay
• L2 regularization

• Penalizes large weights
• Improves generalization

Learning rate Gradient

��✓T
k ✓k

✓ 0 ✓/2 ✓/2
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Data augmentation

• A classifier has to be invariant to a wide variety of 
transformations

43



Pose             Appearance           Illumination



Data augmentation

• A classifier has to be invariant to a wide variety of 
transformations

• Helping the classifier: generate fake data simulating 
plausible transformations

45



Data augmentation

46Krizhevsky 2012



Data augmentation: random crops

• Random brightness and contrast changes

47Krizhevsky 2012



Data augmentation: random crops

• Training: random crops
– Pick a random L in [256,480]
– Resize training image, short side L
– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales
– 10 fixed crops of 224x224: 4 corners + center + flips

Krizhevsky 2012 48



Data augmentation

• When comparing two networks make sure to use the 
same data augmentation!

• Consider data augmentation a part of your network 
design
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Early stopping

Overfitting

Training time is also a hyperparameter
50



Early stopping

• Easy form of regularization

✓0 ✓⇤

Overfitting

✏
✓1

✏
✓2

⌧

✓s
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Bagging and ensemble methods 

• Train three models and average their results

• Change a different algorithm for optimization or 
change the objective function

• If errors are uncorrelated, the expected combined 
error will decrease linearly with the ensemble size
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Bagging and ensemble methods 

• Bagging: uses k different datasets

Training Set 1 Training Set 2 Training Set 3
53



Dropout

54



Dropout

• Disable a random set of neurons (typically 50%)

Srivastava 2014

F
o

rw
ard

55



Dropout: intuition

• Using half the network = half capacity

Furry

Has two eyes

Has a tail

Has paws

Has two ears

Redundant 
representations

56



Dropout: intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as model ensemble
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Dropout: intuition

• Two models in one

Model 1

Model 2
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Dropout: intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as two models in one
– Training a large ensemble of models, each on different 

set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons
59



Dropout: test time

• All neurons are “turned on” – no dropout

Conditions at train 
and test time are 

not the same
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Dropout: test time

x y

z

✓1 ✓2

• Test:

• Train:

z = ✓1x+ ✓2y

E[z] =
1

4
(✓10 + ✓20

+✓1x+ ✓20

+✓10 + ✓2y

+✓1x+ ✓2y)

=
1

2
(✓1x+ ✓2y)

Dropout 
probability 

p=0.5

Weight scaling 
inference rule
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Dropout: verdict

• Efficient bagging method with parameter sharing

• Use it!

• Dropout reduces the effective capacity of a model à
larger models, more training time
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Transfer learning

63



Transfer learning

P1 P2

Large dataset Small dataset

Distribution Distribution

Use what has been 
learned for another 

setting
64



Transfer learning for images

Zeiler and Fergus 2013 65



Transfer learningTrained on 
ImageNet

Feature 
extraction

66Donahue 2014, Razavian 2014



Transfer learningTrained on 
ImageNet

Edges

Simple geometrical shapes (circles, etc)

Parts of an object (wheel, window)

Decision layers

67Donahue 2014, Razavian 2014



Transfer learningTrained on 
ImageNet

New dataset 
with C classes

TRAIN

FROZEN

68Donahue 2014, Razavian 2014



Transfer learning

Donahue 2014, Razavian 2014

If the dataset is big 
enough train more 
layers with a low 

learning rate

TRAIN

FROZEN
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For your projects

• Find a large dataset related to your problem and train 
your network there 

• Take the pre-trained weights from e.g. ImageNet

• Do transfer learning by fine-tuning on you small 
datasets

OR

70



Basic recipe for 
machine learning

71



Basic recipe for machine learning

• Split your data

Find your hyperparameters

20%

train testvalidation

20%60%

72



Basic recipe for machine learning

• Split your data

20%

train testvalidation

20%60%

Human level error …... 1%

Training set error   ….... 5%

Val/Dev set error  ….... 8%

Bias (or underfitting)

Variance
(overfitting)

73



Basic recipe for machine learning

74Credits: Andrew Ng



Basic recipe for machine learning

• You train and test do no come from the same source

40%

train testvalidation

100%60%

Training data (e.g. speech data) Test data (e.g. 
speech data inside a 

helicopter)
75



Basic recipe for machine learning

• dev/val and test set must come from same distribution

40%

train testvalidation

50%60%

Training data (e.g. speech data) Test data (e.g. 
speech data inside a 

helicopter)

test-dev

50%
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Basic recipe for machine learning

Human level error    …... 1%

Training set error     ….... 1.1%

Train-Dev set error  ….... 1.5%

Test-Dev set error  ….... 8%

Test set error ….... 8.5%

Bias

Variance

Data  mismatch

Overfitting to dev

77



Credits: Andrew Ng 78



What do we know so far?

Depth

W
id

th



What do we know so far?

x0

x1

x2

X

✓0

✓1

✓2

Concept of a ‘Neuron’



What do we know so far?

Activation Functions (non-linearities)

Sigmoid: 𝜎 𝑥 = ,
(,./01)

tanh: tanh 𝑥

ReLU: max 0, 𝑥

Leaky ReLU: max 0.1𝑥, 𝑥



What do we know so far?

𝑤;

𝑥;

𝑤,

𝑥,

𝑏

*−1+ 1
𝑥

𝑒@

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

−0.39

−0.39

−0.59

Backpropagation



What do we know so far?

SGD Variations (Momentum, etc.)



What do we know so far?

Dropout

Batch-Norm

Weight Regularization

Data Augmentation

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

Weight Initialization
(e.g., Xavier/2)

e.g., 𝐿I-reg: 𝑅I 𝑊 = ∑ 𝑤MIN
MO,



Why not only more Layers?

• We can not make networks arbitrarily complex
– Why not just go deeper and get better?

– No structure!!
– It’s just brute force!
– Optimization becomes hard
– Performance plateaus / drops!



Convolutional 
Neural Networks 

(CNNs)



What are Convolutions?

𝑓 ∗ 𝑔 = R 𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
V

WV

𝑓 = red
𝑔 = blue

𝑓 ∗ 𝑔 = green

Convolution of two box functions Convolution of two Gaussians

application of a filter to a function
the ‘smaller’ one is typically called the filter kernel



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6𝑓

Discrete case: box filter

1/3 1/3 1/3𝑔

‘Slide’ filter kernel from left to right; at each position,
compute a single value in the output data



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

4 ⋅
1
3
+ 3 ⋅

1
3
+ 2 ⋅

1
3
= 3



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

3 ⋅
1
3
+ 2 ⋅

1
3
+ (−5) ⋅

1
3
= 0



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

2 ⋅
1
3
+ (−5) ⋅

1
3
+ 3 ⋅

1
3
= 0



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

(−5) ⋅
1
3
+ 3 ⋅

1
3
+ 5 ⋅

1
3
= 1



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

3 ⋅
1
3
+ 5 ⋅

1
3
+ 2 ⋅

1
3
=
10
3



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3 4

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

5 ⋅
1
3
+ 2 ⋅

1
3
+ 5 ⋅

1
3
= 4



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3 4 4

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

2 ⋅
1
3
+ 5 ⋅

1
3
+ 5 ⋅

1
3
= 4



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3 4 4 16/3

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

5 ⋅
1
3
+ 5 ⋅

1
3
+ 6 ⋅

1
3
=
16
3



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?



What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?

3 0 0 1 10/3 4 4 16/31) Shrink

2) Pad 
often ‘0’

7/3 3 0 0 1 10/3 4 4 16/3 11/3



Administrative Things

• Next Tuesday: Starting with CNN

• Important! Exercise deadline has been extended to 
Thursday 18h

• Thursday: Solution 2nd exercise, presentation 3rd
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