
Lecture 5 Recap

1

Beyond linear

1-layer network:

x
W

128×128

f

10

f = Wx

2

Neural Network

Depth

W
id

th

3

Output functions

4

Neural networks
What is the shape of
this function?

Loss
(Softmax,

Hinge)

Prediction

5

Sigmoid for binary predictions

x0

x1

x2

X

0

Can be
interpreted as
a probability

1

p(yi = 1|xi,✓)

✓0

✓1

✓2

�(x) =
1

1 + e�x

6

Logistic regression

• Optimize using gradient descent

• Saturation occurs only when the model already has
the right answer

C(✓) = � log p(y|X,✓)

Referred to as cross-entropy

= �
nX

i=1

yi log(⇧i) + (1� yi) log(1�⇧i)

7

Softmax formulation

• What if we have multiple classes?

⇧2 =
exi✓2

exi✓1 + exi✓2

x0

x1

x2

X

Softmax
X

⇧1 =
exi✓1

exi✓1 + exi✓2

8

Softmax formulation

• Softmax

• Softmax loss (ML)

p(yi|x,✓) =
ex✓i

nP
k=1

ex✓k

Li = � log

✓
esyiP
k e

sk

◆

exp

normalize

9

Activation functions

10

Sigmoid �(x) =
1

1 + e�x

@L

@�

@�

@x

@L

@x
=

@�

@x

@L

@�

Forward

x = 6
Saturated

neurons kill the
gradient flow

11

Problem of positive output

w1

w2

More on zero-
mean data later

12

tanh

Zero-
centered

Still saturates

Still saturates

LeCun 1991 13

Rectified Linear Units (ReLU)

Large and
consistent
gradients

Does not saturateFast convergence

What happens if a
ReLU outputs zero?

Dead ReLU

14

Parametric ReLU

Does not die

�(x) = max(↵x, x)

One more parameter
to backprop into

He 2015 15

Maxout units

Generalization
of ReLUs

Linear
regimes

Does not
die

Does not
saturate

Increase of the number of parameters 16

Data pre-processing

For images subtract the mean image (AlexNet) or per-
channel mean (VGG-Net) 17

Weight initialization

18

Initialization is extremely important

Optimum

Initialization

Not guaranteed
to reach the

optimum
19

Small random numbers

• Gaussian with zero mean and standard deviation 0.01

• Let us see what happens:
– Network with 10 layers with 500 neurons each
– Tanh as activation functions
– Input unit Gaussian data

20

Small random numbers

Forward

Input
Last
layer

Activations
become zero

21

Big random numbers

Everything
is saturated

22

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Glorot 2010 23

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Independent

Zero mean

24

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Identically distributed
25

Xavier initialization

• Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

Variance gets multiplied by the number of inputs 26

Xavier initialization

• How to ensure the variance of the output is the same
as the input?

Var(s) = Var(
nX

i

wixi) =
nX

i

Var(wixi)

=
nX

i

[E(wi)]
2Var(xi) + E[(xi)]

2Var(wi) + Var(xi)Var(wi)

=
nX

i

Var(xi)Var(wi) = (nVar(w))Var(x)

1

V ar(w) =
1

n

27

Xavier initialization

Mitigates the effect of
activations going to

zero

28

Xavier initialization with ReLU

29

ReLU kills half of the data
V ar(w) =

2

n

30He 2015

ReLU kills half of the data
V ar(w) =

2

n

He 2015

It makes a huge difference!

31

Tips and tricks

• Use ReLU and Xavier/2 initialization

32

Batch normalization

33

Batch normalization

• Wish: unit Gaussian activations
• Solution: let’s do it

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

D = #features

N
=

m
in

i-
b

at
ch

 s
iz

e
dimension

34Ioffe and Szegedy 2015

Batch normalization

• In each dimension of the features, you have a unit
gaussian

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

D = #features

N
=

m
in

i-
b

at
ch

 s
iz

e
dimension

35Ioffe and Szegedy 2015

Batch normalization

• In each dimension of the features, you have a unit
Gaussian

• Is it ok to treat dimensions separately? Shown
empirically that even if features are not decorrelated,
convergence is still faster with this method

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

Differentiable function so
we can backprop

through it….

36Ioffe and Szegedy 2015

Batch normalization

• A layer to be applied after Fully
Connected (or Convolutional) layers
and before non-linear activation
functions

• Is it a good idea to have all unit
Gaussians before tanh?

37Ioffe and Szegedy 2015

Batch normalization

• Normalize

• Allow the network to change the
range

Ioffe and Szegedy 2015

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

y(k) = �(k)x̂(k) + �(k)

backprop

�(k) =
q

Var[x(k)]

�(k) = E[x(k)]

The network can
learn to undo the

normalization

38

BN for Exercise 2

39

Regularization

40

Regularization

• Any strategy that aims to

Lower
validation error

Increasing
training error

41

Weight decay
• L2 regularization

• Penalizes large weights
• Improves generalization

Learning rate Gradient

��✓T
k ✓k

✓ 0 ✓/2 ✓/2

42

Data augmentation

• A classifier has to be invariant to a wide variety of
transformations

43

Pose Appearance Illumination

Data augmentation

• A classifier has to be invariant to a wide variety of
transformations

• Helping the classifier: generate fake data simulating
plausible transformations

45

Data augmentation

46Krizhevsky 2012

Data augmentation: random crops

• Random brightness and contrast changes

47Krizhevsky 2012

Data augmentation: random crops

• Training: random crops
– Pick a random L in [256,480]
– Resize training image, short side L
– Randomly sample crops of 224x224

• Testing: fixed set of crops
– Resize image at N scales
– 10 fixed crops of 224x224: 4 corners + center + flips

Krizhevsky 2012 48

Data augmentation

• When comparing two networks make sure to use the
same data augmentation!

• Consider data augmentation a part of your network
design

49

Early stopping

Overfitting

Training time is also a hyperparameter
50

Early stopping

• Easy form of regularization

✓0 ✓⇤

Overfitting

✏
✓1

✏
✓2

⌧

✓s

51

Bagging and ensemble methods

• Train three models and average their results

• Change a different algorithm for optimization or
change the objective function

• If errors are uncorrelated, the expected combined
error will decrease linearly with the ensemble size

52

Bagging and ensemble methods

• Bagging: uses k different datasets

Training Set 1 Training Set 2 Training Set 3
53

Dropout

54

Dropout

• Disable a random set of neurons (typically 50%)

Srivastava 2014

F
o

rw
ard

55

Dropout: intuition

• Using half the network = half capacity

Furry

Has two eyes

Has a tail

Has paws

Has two ears

Redundant
representations

56

Dropout: intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as model ensemble

57

Dropout: intuition

• Two models in one

Model 1

Model 2

58

Dropout: intuition

• Using half the network = half capacity
– Redundant representations
– Base your scores on more features

• Consider it as two models in one
– Training a large ensemble of models, each on different

set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons
59

Dropout: test time

• All neurons are “turned on” – no dropout

Conditions at train
and test time are

not the same

60

Dropout: test time

x y

z

✓1 ✓2

• Test:

• Train:

z = ✓1x+ ✓2y

E[z] =
1

4
(✓10 + ✓20

+✓1x+ ✓20

+✓10 + ✓2y

+✓1x+ ✓2y)

=
1

2
(✓1x+ ✓2y)

Dropout
probability

p=0.5

Weight scaling
inference rule

61

Dropout: verdict

• Efficient bagging method with parameter sharing

• Use it!

• Dropout reduces the effective capacity of a model à
larger models, more training time

62

Transfer learning

63

Transfer learning

P1 P2

Large dataset Small dataset

Distribution Distribution

Use what has been
learned for another

setting
64

Transfer learning for images

Zeiler and Fergus 2013 65

Transfer learningTrained on
ImageNet

Feature
extraction

66Donahue 2014, Razavian 2014

Transfer learningTrained on
ImageNet

Edges

Simple geometrical shapes (circles, etc)

Parts of an object (wheel, window)

Decision layers

67Donahue 2014, Razavian 2014

Transfer learningTrained on
ImageNet

New dataset
with C classes

TRAIN

FROZEN

68Donahue 2014, Razavian 2014

Transfer learning

Donahue 2014, Razavian 2014

If the dataset is big
enough train more
layers with a low

learning rate

TRAIN

FROZEN

69

For your projects

• Find a large dataset related to your problem and train
your network there

• Take the pre-trained weights from e.g. ImageNet

• Do transfer learning by fine-tuning on you small
datasets

OR

70

Basic recipe for
machine learning

71

Basic recipe for machine learning

• Split your data

Find your hyperparameters

20%

train testvalidation

20%60%

72

Basic recipe for machine learning

• Split your data

20%

train testvalidation

20%60%

Human level error …... 1%

Training set error ….... 5%

Val/Dev set error ….... 8%

Bias (or underfitting)

Variance
(overfitting)

73

Basic recipe for machine learning

74Credits: Andrew Ng

Basic recipe for machine learning

• You train and test do no come from the same source

40%

train testvalidation

100%60%

Training data (e.g. speech data) Test data (e.g.
speech data inside a

helicopter)
75

Basic recipe for machine learning

• dev/val and test set must come from same distribution

40%

train testvalidation

50%60%

Training data (e.g. speech data) Test data (e.g.
speech data inside a

helicopter)

test-dev

50%

76

Basic recipe for machine learning

Human level error …... 1%

Training set error ….... 1.1%

Train-Dev set error ….... 1.5%

Test-Dev set error ….... 8%

Test set error ….... 8.5%

Bias

Variance

Data mismatch

Overfitting to dev

77

Credits: Andrew Ng 78

What do we know so far?

Depth

W
id

th

What do we know so far?

x0

x1

x2

X

✓0

✓1

✓2

Concept of a ‘Neuron’

What do we know so far?

Activation Functions (non-linearities)

Sigmoid: 𝜎 𝑥 = ,
(,./01)

tanh: tanh 𝑥

ReLU: max 0, 𝑥

Leaky ReLU: max 0.1𝑥, 𝑥

What do we know so far?

𝑤;

𝑥;

𝑤,

𝑥,

𝑏

*−1+ 1
𝑥

𝑒@

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

−0.39

−0.39

−0.59

Backpropagation

What do we know so far?

SGD Variations (Momentum, etc.)

What do we know so far?

Dropout

Batch-Norm

Weight Regularization

Data Augmentation

x̂(k) =
x(k) � E[x(k)]p

Var[x(k)]

Weight Initialization
(e.g., Xavier/2)

e.g., 𝐿I-reg: 𝑅I 𝑊 = ∑ 𝑤MIN
MO,

Why not only more Layers?

• We can not make networks arbitrarily complex
– Why not just go deeper and get better?

– No structure!!
– It’s just brute force!
– Optimization becomes hard
– Performance plateaus / drops!

Convolutional
Neural Networks

(CNNs)

What are Convolutions?

𝑓 ∗ 𝑔 = R 𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
V

WV

𝑓 = red
𝑔 = blue

𝑓 ∗ 𝑔 = green

Convolution of two box functions Convolution of two Gaussians

application of a filter to a function
the ‘smaller’ one is typically called the filter kernel

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6𝑓

Discrete case: box filter

1/3 1/3 1/3𝑔

‘Slide’ filter kernel from left to right; at each position,
compute a single value in the output data

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

4 ⋅
1
3
+ 3 ⋅

1
3
+ 2 ⋅

1
3
= 3

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

3 ⋅
1
3
+ 2 ⋅

1
3
+ (−5) ⋅

1
3
= 0

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

2 ⋅
1
3
+ (−5) ⋅

1
3
+ 3 ⋅

1
3
= 0

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

(−5) ⋅
1
3
+ 3 ⋅

1
3
+ 5 ⋅

1
3
= 1

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

3 ⋅
1
3
+ 5 ⋅

1
3
+ 2 ⋅

1
3
=
10
3

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3 4

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

5 ⋅
1
3
+ 2 ⋅

1
3
+ 5 ⋅

1
3
= 4

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3 4 4

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

2 ⋅
1
3
+ 5 ⋅

1
3
+ 5 ⋅

1
3
= 4

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3 4 4 16/3

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

5 ⋅
1
3
+ 5 ⋅

1
3
+ 6 ⋅

1
3
=
16
3

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?

3 0 0 1 10/3 4 4 16/31) Shrink

2) Pad
often ‘0’

7/3 3 0 0 1 10/3 4 4 16/3 11/3

Administrative Things

• Next Tuesday: Starting with CNN

• Important! Exercise deadline has been extended to
Thursday 18h

• Thursday: Solution 2nd exercise, presentation 3rd

99

