Tा

Lecture 5 Recap

Beyond linear

1-layer network: $f=\mathbf{W x}$

128×128
10

Neural Network

input layer
hidden layer 1 hidden layer 2 hidden layer 3

Depth

Output functions

Neural networks

Sigmoid for binary predictions

$$
x_{0}
$$

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

1

Logistic regression

- Optimize using gradient descent
- Saturation occurs only when the model already has the right answer

$$
\begin{gathered}
C(\boldsymbol{\theta})=-\sum_{i=1}^{n} y_{i} \log \left(\Pi_{i}\right)+\left(1-y_{i}\right) \log \left(1-\Pi_{i}\right) \\
\text { Referred to as cross-entropy }
\end{gathered}
$$

Softmax formulation

- What if we have multiple classes?

Softmax formulation

- Softmax

$$
p\left(y_{i} \mid \mathbf{x}, \boldsymbol{\theta}\right)=\frac{e^{e^{\mathbf{\boldsymbol { \theta } _ { \boldsymbol { i } }}}}{ }^{\exp }}{\sum_{k=1}^{n} e^{\mathbf{x} \boldsymbol{\theta}_{k}}} \text { normalize }
$$

- Softmax loss (ML)

$$
L_{i}=-\log \left(\frac{e^{s_{y_{i}}}}{\sum_{k} e^{s_{k}}}\right)
$$

Activation functions

$$
\text { Sigmoid } \quad \sigma(x)=\frac{1}{1+e^{-x}}
$$

Forward

X Saturated neurons kill the gradient flow

$\frac{\partial t}{\partial x}=\frac{\partial \sigma}{\partial x} \frac{\partial L}{\partial \sigma}$
$\frac{\partial \sigma}{\partial x}$
$\frac{\partial L}{\partial \sigma}$

Problem of positive output

More on zerooptimal w mean data later vector

tanh

\boldsymbol{X} Still saturates

X Still saturates

Zerocentered

Rectified Linear Units (ReLU)

X Dead ReLU

What happens if a ReLU outputs zero?
\checkmark Fast convergence
Does not saturate

Parametric ReLU

$$
\sigma(x)=\max (\alpha x, x)
$$

to backprop into

Does not die

Maxout units

\checkmark Generalization of ReLUs \mathbf{X} Increase of the number of parameters

Data pre-processing

For images subtract the mean image (AlexNet) or perchannel mean (VGG-Net)

Tा

Weight initialization

Initialization is extremely important

$$
\mathbf{x}^{*}=\arg \min f(\mathbf{x})
$$

Small random numbers

Big random numbers

Everything is saturated

Xavier initialization

- Gaussian with zero mean, but what standard deviation?
$\operatorname{Var}(s)=\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right)$

Xavier initialization

- Gaussian with zero mean, but what standard deviation?

$$
\begin{aligned}
& \operatorname{Var}(s)= \operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \longrightarrow \text { Independent } \\
&= \sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& \text { Zero mean }
\end{aligned}
$$

Xavier initialization

- Gaussian with zero mean, but what standard deviation?

$$
\begin{aligned}
& \operatorname{Var}(s)=\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
&=\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
&=\sum_{i}^{n} \operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)=(n \operatorname{Var}(w)) \operatorname{Var}(x) \\
& \text { Identically distributed }
\end{aligned}
$$

Xavier initialization

- Gaussian with zero mean, but what standard deviation?

$$
\begin{aligned}
\operatorname{Var}(s) & =\operatorname{Var}\left(\sum_{i}^{n} w_{i} x_{i}\right)=\sum_{i}^{n} \operatorname{Var}\left(w_{i} x_{i}\right) \\
& =\sum_{i}^{n}\left[E\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+E\left[\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right) \\
& \left.=\sum_{i}^{n} \operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)=(n) \operatorname{ar}(w)\right) \operatorname{Var}(x)
\end{aligned}
$$

Variance gets multiplied by the number of inputs

Xavier initialization

- How to ensure the variance of the output is the same as the input?

$$
\begin{aligned}
& \frac{(n \operatorname{Var}(w))}{1} \operatorname{Var}(x) \\
& \operatorname{Var}(w)=\frac{1}{n}
\end{aligned}
$$

Xavier initialization

Xavier initialization with ReLU

ReLU kills half of the data

$\operatorname{Var}(w)=\frac{2}{n}$

He $2015{ }^{29}$

ReLU kills half of the data

$\operatorname{Var}(w)=\frac{2}{n} \quad$ It makes a huge difference!

Tips and tricks

- Use ReLU and Xavier/2 initialization

Tा

Batch normalization

Batch normalization

- Wish: unit Gaussian activations
- Solution: let's do it

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch normalization

- In each dimension of the features, you have a unit gaussian

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch normalization

- In each dimension of the features, you have a unit Gaussian
- Is it ok to treat dimensions separately? Shown empirically that even if features are not decorrelated, convergence is still faster with this method

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Differentiable function so we can backprop through it....

Batch normalization

- A layer to be applied after Fully Connected (or Convolutional) Layers and before non-linear activation functions
- Is it a good idea to have all unit Gaussians before tanh?

Batch normalization

- Normalize

$$
\hat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

- Allow the network to change the range

$$
y^{(k)}=\gamma^{(k)} \hat{x}^{(k)}+\beta^{(k)}
$$

The network can learn to undo the normalization

$$
\begin{gathered}
\gamma^{(k)}=\sqrt{\operatorname{Var}\left[x^{(k)}\right]} \\
\beta^{(k)}=\mathrm{E}\left[x^{(k)}\right]
\end{gathered}
$$

BN for Exercise 2

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{aligned}
& \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \\
& \sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} \quad / / \text { mini-batch variance } \\
& \widehat{x}_{i} \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} \\
& y_{i} \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right) \quad / / \text { scale and shift }
\end{aligned}
$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Input: Network N with trainable parameters Θ; subset of activations $\left\{x^{(k)}\right\}_{k=1}^{K}$
Output: Batch-normalized network for inference, $N_{\mathrm{BN}}^{\mathrm{inf}}$
$N_{\mathrm{BN}}^{\mathrm{tr}} \leftarrow N \quad / /$ Training BN network
for $k=1 \ldots K$ do
Add transformation $y^{(k)}=\mathrm{BN}_{\gamma^{(k)}, \beta^{(k)}}\left(x^{(k)}\right)$ to $N_{\text {BN }}^{\mathrm{tr}}$ (Alg. 1)
4: Modify each layer in $N_{\mathrm{BN}}^{\mathrm{tr}}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
5: end for
Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup$ $\left\{\gamma^{(k)}, \beta^{(k)}\right\}_{k=1}^{K}$
$N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}} \quad / /$ Inference BN network with frozen // parameters
for $k=1 \ldots K$ do $/ /$ For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
10: Process multiple training mini-batches \mathcal{B}, each of size m, and average over them:

$$
\begin{aligned}
\mathrm{E}[x] & \leftarrow \mathrm{E}_{\mathcal{B}}\left[\mu_{\mathcal{B}}\right] \\
\operatorname{Var}[x] & \leftarrow \frac{m}{m-1} \mathrm{E}_{\mathcal{B}}\left[\sigma_{\mathcal{B}}^{2}\right]
\end{aligned}
$$

11: In $N_{\mathrm{BN}}^{\mathrm{inf}}$, replace the transform $y=\mathrm{BN}_{\gamma, \beta}(x)$ with $y=\frac{\gamma}{\sqrt{\operatorname{Var}[x]+\epsilon}} \cdot x+\left(\beta-\frac{\gamma \mathrm{E}[x]}{\sqrt{\operatorname{Var}[x]+\epsilon}}\right)$
end for

Algorithm 2: Training a Batch-Normalized Network

Regularization

Regularization

- Any strategy that aims to

Lower validation error
 Increasing
 training error

Weight decay

- L ${ }^{2}$ regularization

$$
\boldsymbol{\theta}_{k+1}=\boldsymbol{\theta}_{k}-\epsilon \nabla_{\text {Learning rate }}^{\nabla_{\boldsymbol{\theta}} L\left(\boldsymbol{\theta}_{k}, \mathbf{x}^{i}, \mathbf{y}^{i}\right)-\lambda \boldsymbol{\theta}_{k}^{T} \boldsymbol{\theta}_{k}}
$$

- Penalizes large weights
- Improves generalization

$\theta / 2 / \int^{\theta / 2}$

Data augmentation

- A classifier has to be invariant to a wide variety of transformations

Data augmentation

- A classifier has to be invariant to a wide variety of transformations
- Helping the classifier: generate fake data simulating plausible transformations

Data augmentation

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 images)

c. Crop+Flip augmentation (= 10 images)

+ flips

Krizhevsky 2012

Data augmentation: random crops

- Random brightness and contrast changes

Data augmentation: random crops

- Training: random crops
- Pick a random L in [256,480]
- Resize training image, short side L
- Randomly sample crops of 224×224
- Testing: fixed set of crops
- Resize image at N scales

- 10 fixed crops of 224×224: 4 corners + center + flips

Data augmentation

- When comparing two networks make sure to use the same data augmentation!
- Consider data augmentation a part of your network design

Early stopping

Training time is also a hyperparameter

Early stopping

- Easy form of regularization

Bagging and ensemble methods

- Train three models and average their results
- Change a different algorithm for optimization or change the objective function
- If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

Bagging and ensemble methods

- Bagging: uses k different datasets

Training Set 1

Training Set 2

Training Set 3

Dropout

Dropout

- Disable a random set of neurons (typically 50\%)

(a) Standard Neural Net

(b) After applying dropout.

Dropout: intuition

- Using half the network = half capacity
(b) After applying dropout.

Dropout: intuition

- Using half the network = half capacity
- Redundant representations
- Base your scores on more features
- Consider it as model ensemble

Dropout: intuition

- Two models in one

Model 1

(b) After applying dropout.

Dropout: intuition

- Using half the network = half capacity
- Redundant representations
- Base your scores on more features
- Consider it as two models in one
- Training a large ensemble of models, each on different set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

Dropout: test time

- All neurons are "turned on" - no dropout

Conditions at train and test time are not the same

Dropout: test time

- Test: $z=\theta_{1} x+\theta_{2} y$
$p=0.5$

- Train:

$$
\begin{aligned}
\mathrm{E}[z]= & \frac{1}{4}\left(\theta_{1} 0+\theta_{2} 0\right. \\
& +\theta_{1} x+\theta_{2} 0 \\
& +\theta_{1} 0+\theta_{2} y \\
& \left.+\theta_{1} x+\theta_{2} y\right) \\
= & \frac{1}{2}\left(\theta_{1} x+\theta_{2} y\right)
\end{aligned}
$$

Weight scaling inference rule

Dropout: verdict

- Efficient bagging method with parameter sharing
- Use it!
- Dropout reduces the effective capacity of a model \rightarrow larger models, more training time

Transfer learning

Transfer learning

Distribution

Large dataset

Distribution

Small dataset

Use what has been
learned for another setting

Transfer learning for images

Zeiler and Fergus 2013

Trained on ImageNet

FC-1000
FC-4096
FC-4096

MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

Transfer learning

 ImageNet| | - Decision layers |
| :---: | :---: |
| mapool | |
| | - Parts of an object (wheel, window) |
| | |
| Comsso | 7 |
| Unemol | -Simple geometrical shapes (circles, etc) |
| Hapool | |
| | |
| ${ }_{\substack{\text { coseol } \\ \text { comed } \\ \text { comed }}}$ | - Edges |
| ${ }_{\text {combe }}$ | |

Trained on ImageNet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Transfer learning

New dataset with C classes

Transfer learning

If the dataset is big enough train more layers with a low learning rate

For your projects

- Find a large dataset related to your problem and train your network there

- Take the pre-trained weights from e.g. ImageNet
- Do transfer learning by fine-tuning on you small datasets

Tा

$$
\begin{aligned}
& \text { Basic recipe for } \\
& \text { machine learning }
\end{aligned}
$$

Basic recipe for machine learning

- Split your data

$$
\begin{array}{lll}
60 \% & 20 \% & 20 \%
\end{array}
$$

Find your hyperparameters

Basic recipe for machine learning

- Split your data

$$
\begin{array}{lll}
60 \% & 20 \% & 20 \%
\end{array}
$$

train

val

Bias (or underfitting)
Training set error 5\%
Val/Dev set error 8\% (overfitting)

Basic recipe for machine learning

Basic recipe for machine learning

- You train and test do no come from the same source

$$
60 \% \quad 40 \% \quad 100 \%
$$

Training data (e.g. speech data)
 Test data (e.g.

speech data inside a helicopter)

Basic recipe for machine learning

- dev/val and test set must come from same distribution

$$
60 \% \quad 40 \% \quad 50 \% \quad 50 \%
$$

Basic recipe for machine learning

Human level error 1%	Bias
Training set error	.-.... 1.1%	
Train-Dev set error		Variance
Test-Dev set error 8\%	Data mismatch
Test set error 8.5%	Overfitting to dev

Administrative Things

- Next Thursday June 8th: CNN
- Tomorrow: Solution $2^{\text {nd }}$ exercise, presentation $3^{\text {rd }}$

