

Lecture 5 Recap

Beyond linear

Neural Network

Width

Depth

Output functions

Neural networks

Sigmoid for binary predictions

Logistic regression

Optimize using gradient descent

 Saturation occurs only when the model already has the right answer

$$C(\boldsymbol{\theta}) = -\sum_{i=1}^{n} y_i \log(\Pi_i) + (1 - y_i) \log(1 - \Pi_i)$$

Referred to as cross-entropy

Softmax formulation

• What if we have multiple classes?

Softmax formulation

• Softmax

$$p(y_i|\mathbf{x}, oldsymbol{ heta}) = \frac{e^{\mathbf{x}oldsymbol{ heta}_i}}{\sum\limits_{k=1}^n e^{\mathbf{x}oldsymbol{ heta}_k}}$$
 normalize

Softmax loss (ML)

$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}}\right)$$

Activation functions

Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$

X Saturated neurons kill the gradient flow

x = 6

$$\frac{\partial L}{\partial x} = \frac{\partial \sigma}{\partial x} \frac{\partial L}{\partial \sigma}$$

$$\frac{\partial \sigma}{\partial x}$$

$$- \frac{\partial L}{\partial \sigma}$$

Problem of positive output

tanh

X Still saturates

Rectified Linear Units (ReLU)

Parametric ReLU

Does not die

Maxout units

Increase of the number of parameters

Data pre-processing

For images subtract the mean image (AlexNet) or perchannel mean (VGG-Net)

Weight initialization

Initialization is extremely important

$$\mathbf{x}^* = \arg\min f(\mathbf{x})$$

Small random numbers

Forward

Big random numbers

Everything is saturated

 Gaussian with zero mean, but what standard deviation?

$$\operatorname{Var}(s) = \operatorname{Var}(\sum_{i=1}^{n} w_{i} x_{i}) = \sum_{i=1}^{n} \operatorname{Var}(w_{i} x_{i})$$

 Gaussian with zero mean, but what standard deviation?

$$Var(s) = Var(\sum_{i=1}^{n} w_{i}x_{i}) = \sum_{i=1}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i=1}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$
Zero mean

 Gaussian with zero mean, but what standard deviation?

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i}) = (nVar(w)) Var(x)$$
Identically distributed

 Gaussian with zero mean, but what standard deviation?

$$Var(s) = Var(\sum_{i=1}^{n} w_{i}x_{i}) = \sum_{i=1}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i=1}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

$$= \sum_{i=1}^{n} Var(x_{i}) Var(w_{i}) = (n) Var(w_{i}) Var(x_{i})$$

Variance gets multiplied by the number of inputs

 How to ensure the variance of the output is the same as the input?

$$(n\operatorname{Var}(w))\operatorname{Var}(x)$$

$$Var(w) = \frac{1}{n}$$

Xavier initialization with ReLU

ReLU kills half of the data

ReLU kills half of the data

$$Var(w) = \frac{2}{n}$$

It makes a huge difference!

Tips and tricks

Use ReLU and Xavier/2 initialization

- Wish: unit Gaussian activations
- Solution: let's do it

• In each dimension of the features, you have a unit gaussian

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

- In each dimension of the features, you have a unit Gaussian
- Is it ok to treat dimensions separately? Shown empirically that even if features are not decorrelated, convergence is still faster with this method

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Differentiable function so we can backprop through it....

 A layer to be applied after Fully Connected (or Convolutional) layers and before non-linear activation functions

• Is it a good idea to have all unit Gaussians before tanh?

Batch normalization

Normalize

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$

Allow the network to change the range

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

backprop

The network can learn to undo the normalization

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \operatorname{E}[x^{(k)}]$$

BN for Exercise 2

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^{K}$

Output: Batch-normalized network for inference, $N_{\rm BN}^{\rm inf}$

- N^{tr}_{BN} ← N // Training BN network
- 2: **for** k = 1 ... K **do**
- 3: Add transformation $y^{(k)} = BN_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to N_{BN}^{tr} (Alg. 1)
- Modify each layer in N_{BN}^{tr} with input x^(k) to take y^(k) instead
- 5: end for
- 6: Train $N_{\mathrm{BN}}^{\mathrm{tr}}$ to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^K$
- 7: $N_{\rm BN}^{\rm inf} \leftarrow N_{\rm BN}^{\rm tr}$ // Inference BN network with frozen // parameters
- 8: for k = 1 ... K do
- 9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_B \equiv \mu_B^{(k)}$, etc.
- 10: Process multiple training mini-batches B, each of size m, and average over them:

$$E[x] \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$$

 $Var[x] \leftarrow \frac{m}{m-1}E_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$

11: In N_{BN}^{inf} , replace the transform $y = BN_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{Var[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma E[x]}{\sqrt{Var[x] + \epsilon}}\right)$

12: end for

Algorithm 2: Training a Batch-Normalized Network

Regularization

Regularization

Any strategy that aims to

Lower validation error

Increasing training error

Weight decay

• L² regularization

$$m{ heta}_{k+1} = m{ heta}_k - \epsilon
abla_{m{ heta}} L(m{ heta}_k, \mathbf{x}^i, \mathbf{y}^i) - \lambda m{ heta}_k^T m{ heta}_k$$
 Learning rate Gradient

- Penalizes large weights
- Improves generalization

 A classifier has to be invariant to a wide variety of transformations

 A classifier has to be invariant to a wide variety of transformations

 Helping the classifier: generate fake data simulating plausible transformations

a. No augmentation (= 1 image)

b. Flip augmentation (= 2 images)

224x224

c. Crop+Flip augmentation (= 10 images)

224x224

+ flips

Data augmentation: random crops

Random brightness and contrast changes

Data augmentation: random crops

- Training: random crops
 - Pick a random L in [256,480]
 - Resize training image, short side L
 - Randomly sample crops of 224x224

- Testing: fixed set of crops
 - Resize image at N scales
 - 10 fixed crops of 224x224: 4 corners + center + flips

• When comparing two networks make sure to use the same data augmentation!

Consider data augmentation a part of your network design

Early stopping

Training time is also a hyperparameter

Early stopping

Easy form of regularization

Bagging and ensemble methods

Train three models and average their results

 Change a different algorithm for optimization or change the objective function

 If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

Bagging and ensemble methods

• Bagging: uses k different datasets

Dropout

Dropout

Disable a random set of neurons (typically 50%)

(a) Standard Neural Net

(b) After applying dropout.

Furry

Using half the network = half capacity

Redundant representations

Has two eyes Has a tail Has paws Has two ears

- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

Consider it as model ensemble

Two models in one

(b) After applying dropout.

Model 2

- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

- Consider it as two models in one
 - Training a large ensemble of models, each on different set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

Dropout: test time

• All neurons are "turned on" - no dropout

Conditions at train and test time are not the same

Dropout: test time

Dropout probability

• Test:
$$z = \theta_1 x + \theta_2 y$$

D = 0.5

• Train:
$$E[z] = \frac{1}{4}(\theta_1 0 + \theta_2 0 \\ + \theta_1 x + \theta_2 0 \\ + \theta_1 0 + \theta_2 y \\ + \theta_1 x + \theta_2 y)$$

Weight scaling inference rule

$$= \frac{1}{2} \theta_1 x + \theta_2 y$$

Dropout: verdict

Efficient bagging method with parameter sharing

Use it!

 Dropout reduces the effective capacity of a model → larger models, more training time

Transfer learning

Transfer learning

Transfer learning for images

Trained on ImageNet

Transfer learning

Feature extraction

Transfer learning Trained on ImageNet FC-1000 Decision layers FC-4096 FC-4096 MaxPool Conv-512 Parts of an object (wheel, window) Conv-512 MaxPool Conv-512 Conv-512 MaxPool Simple geometrical shapes (circles, etc) Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

Trained on ImageNet

Transfer learning

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

TRAIN

New dataset with C classes

FROZEN

Transfer learning

If the dataset is big enough train more layers with a low learning rate

For your projects

 Find a large dataset related to your problem and train your network there

OR

Take the pre-trained weights from e.g. ImageNet

Do transfer learning by fine-tuning on you small datasets

Split your data

Find your hyperparameters

Split your data

You train and test do no come from the same source

dev/val and test set must come from same distribution

Training data (e.g. speech data)

Test data (e.g. speech data inside a

helicopter)

Human level error 1%

Training set error 1.1%

Train-Dev set error 1.5%

Test-Dev set error 8%

Test set error 8.5%

Bias

Variance

Data mismatch

Overfitting to dev

Administrative Things

Next Thursday June 8th: CNN

Tomorrow: Solution 2nd exercise, presentation 3rd