TUT

| ecture 5 Recap



Beyond linear

1-layer network: f = Wx
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input layer

Neural Network

hidden layer 1 hidden layer 2 hidden layer 3

output layer

Depth
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Output functions



Neural networks

What is the shape of
this function?

| 0SS
(Softmax,
Hinge)

output layer

o Prediction

hidden layer



Sigmoid for binary predictions

B 1
14 e ®

- o(x)
1

Can be
interpreted as
a propability

p(y; = 1]x;,0)

6



Logistic regression

« Optimize using gradient descent

« Saturation occurs only when the model already has
the right answer

C(0) = — Zy log(IL;) + (1 — y;) log(1 — II;)

Referred to as cross-entropy



« \Whatif we have multiple classes?

X0

Softmax formulation

Softmax




Softmax formulation

« Softmax exp

&)

p(y’i|X7 0) n

(2] .
kzl e*”* normalize

e Softmax loss (ML)




TUT

Activation functions



X Saturated
neurons kill the
gradient flow

oL
oo .



Problem of

DosItive output

w2
allowed
gradient
update
directions
|
zig zag path W1
allowed
gradient
update
directions

hypothetical More on zero-

optimal w mean data later
vector
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S x Still saturates
P —l. A —12 A "’7’ Ah— 5 Ah— : e Zero_
/. centered
' //
x Still saturates " |

LeCun 1901 =



Rectified Linear Units (Rel_LU)

X Dead Rel U
(, Large and
What happens if a | consistent
RelLU outputs zero? 7| gradients o/

/ ~ast convergence / Does not saturate

14



Parametric RelLU

o(x) = max(ax, x)

[

One more parameter
to backprop into

\/ Does not die

He 2015 ©



Maxout units

Absolute value

Quadratic

Rectifier

hi(x)

hi(x)

= f \— K |

€T €I €T
k=2 k=5
Does not

k=2 |
/ Generalization Linear /Does not /
of RelLUs regimes die saturate
){Incmﬁxxaofﬂwanbwnberofpawwneuas
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Data pre-processing

original data zero-centered data normalized data
i
0 - L. /I

-10 L -10

13 =10 3 0 5 19 -10 =5 0 5

For images subtract the mean image (AlexNet) or per-
channel mean (VGG-Net) 17
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Welght initialization



Initialization is extremely important

X" = arg min f(x)

INitialization

Not guaranteed
to reach the
optimum

Optimum




Small random numbers

o (Gaussian with zero mean and standard deviation 0.01

e Let us see what happens:
— Network with 10 layers with 500 neurons each
— Tanh as activation functions
— Input unit Gaussian data



......
.......

-0.00010

Small random numbers

R

Activations
become zero

L ast
layer

21



.........

Everything
'S saturated

22



Xavier initialization

o Gaussian with zero mean, but what standard
deviation?

Var(s) = Var(z W T;) = ZVaI‘(wiCUi)

Glorot 2010



Xavier initialization

o Gaussian with zero mean, but what standard
deviation?

Var(s) = Var( szxz Zvar(wim’i) \ Independent

— Z r(z;) + El(z }/Ié\/ar(wi) + Var(x;)Var(w;)

/ero mean



Xavier initialization

o Gaussian with zero mean, but what standard
deviation?

Var(s) = Var( Z W;T;) Z Var(w;x;)
= Z 1*Var(z;) + E[(z;)]*Var(w;) + Var(x;)Var(w;)

— ZVar(aiq;)Val"(wi) = (nVar(w)) Var(z)
' I [dentically distributedﬁ




Xavier initialization

o Gaussian with zero mean, but what standard
deviation?

Var(s) = Var( Z W;T;) z”’: Var(w;x;)

= Z 1*Var(z;) + E[(z;)]*Var(w;) + Var(x;)Var(w;)

= Z Var(z;)Var(w;) :@far(w)) Var(z)

Variance gets multiplied by the number of inputs



Xavier initialization

« How to ensure the variance of the output is the same
as the input?

Var(x)

1

Var(w) =

S | =

2/



Xavier initialization

Mitigates the effect of
activations going to
.. Zero




Xavier initialization with RelLU

layer mean
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Rel U kills half of the data

layer mean

2
Var(w) = —
n

......

layer std

He 2015 =



Rel U kills half of the data

2
Var(w) = — It makes a huge difference!

09

Eoss
08\ ——%r‘z,Varlw,]:l ours
0.5 e A,Var{w] = 1 Xavier

T
Epoch

He 2015 =



Tips and tricks

o« Use Rel .U and Xavier/2 initialization



TUT

Batch normalization



Batch normalization

o \Wish: unit Gaussian activations

 Solution: let's do it dimension

/

(k) _ (k)
(k) _ L E[z'"]
v/ Var[z(*®)]

N = mini-batch size

VVV'VV

D = #features

loffe and Szegedy 2015



Batch normalization

* In each dimension of the features, you have a unit:
gaussian dimension

/

(k) _ (k)
(k) _ L E[z'"]
v/ Var[z(*®)]

N = mini-batch size

VVV'VV

D = #features

loffe and Szegedy 2015



Batch normalization

* In each dimension of the features, you have a unit
Gaussian

 |sit ok to treat dimensions separately? Shown
empirically that even if features are not decorrelated,
convergence is still faster with this method

Differentiable function so
we can backprop
through it..

(k) _ (k)
Ak) _ T E[z'"]
v/ Var[z(*)]

loffe and Szegedy 2015



Batch normalization |

« A layer to be applied after Fully FLC
Connected (or Convolutional) layers BN
and before non-linear activation 1
functions ta[‘“

FC

« |sitagood idea to have all unit BlN

Gaussians before tanh? :

tanh

l
loffe and Szegedy 2015



Batch normalization

e Normalize
The network can

(k) _ R [pk) learn to undo the
7(k) _ L ']

normalization
v/ Var[z(*)]

~(F) — \/Var[a:(k)]

« Allow the network to change the 5w):lﬂxwﬁ

range

backprop
loffe and Szegedy 2015 ¢



BN for Exercise 2

Input: Values of z over a mini-batch: B = {z,__,. };
Parameters to be learned: ~, 3
Output: {y, = BN, g(z;)}

m

up — =— Z T, // mini-batch mean
m
of — — Z(:r, — pug)’ // mini-batch variance
T, + ;ﬂzs /! normalize
\/ O’B! + €
yi ¢« 7T; + 8 = BN, sg(z;) /! scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Input: Network N with trainable parameters ©;
subset of activations {z!* } [ |
Output: Batch-normalized network for inference, Njii
- Niiy < N // Training BN network
fork=1...K do
Add transformation y'*) = BN. ) gim) (z™)) to
Ny (Alg. 1)
4 Modify each layer in Njj,, with input z(*) to take
y'*) instead
end for
6: Train Nj, to optimize the parameters © U
{’\'"“" 3\k) }}. .
- Nl « Niy  // Inference BN network with frozen
/Il parameters

§: fork=1...K do .
/f For clarity, z = 28y = 48, yp = p}f’, ete.
10:  Process multiple training mini-batches B, each of
size m, and average over them:
E[z] + Eg[us]
Var[z| « —LSEg|og]

wp e

o

-l

&

11: In N, rcplacc the transform y= BN.,”,-;(;E) with
~ Elx]
y =

Var|z]+e ' :;\'ar {x] +e
12: end for

Algorithm 2: Training a Batch-Normalized Network

39



Reqgularization



Regularization

« Any strategy that aims to

Increasing
training error



Weight decay

* [2reqgularization

Ori1 =0 — EV@L(Qk,Xi,yi) —)\49;59;C

N

L earning rate Gradient

« Penalizes large weights 0/2
* Improves generalization i i i




Data augmentation

« A classifier has to be invariant to a wide variety of
transformations



Google e (o JRUSNCY i

All Images Videos News Shopping More Settings Tools SafeSearch ~

| ?'
t: L —
AR

Cute And Kittens Clipart

I[Lumination‘



Data augmentation

« A classifier has to be invariant to a wide variety of
transformations

« Helping the classifier: generate fake data simulating
olausible transformations



Data augmentatlon

a. No augmentation

+ flips

Krizhevsky 2012 “°



Data augmentation: random crops

« Random brightness and contrast changes

Krizhevsky 2012



Data augmentation: random crops

« Training: random crops
— Pick a random L in [256,480]
— Resize training image, short side L
— Randomly sample crops of 224x224

« Testing: fixed set of crops
— Resize image at N scales
— 10 fixed crops of 224x224: 4 corners + center + flips

Krizhevsky 2012



Data augmentation

« \When comparing two networks make sure to use the
same data augmentation!

« Consider data augmentation a part of your network
design



:

Loss (ndgative log likelihood)

-arly stopping

Learning curves

| | | 1

*— Training set loss
—— Validation set lossHH

Overfitting

Time (epochs)

Training time is also a hyperparameter

50



—arly stopping

« Easy form of regularization

0p — 0,— 0, 0, 0"
\ ] Overfitting




Bagging and ensemble methods

Train three models and average their results

Change a different algorithm for optimization or
change the objective function

f errors are uncorrelated, the expected combined
error will decrease linearly with the ensemble size
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Bagging and ensemble methods

Bagging: uses k different datasets

Training Set 2 Training Set 3

Training Set 1



Dropout



)

Srivastava 2014

Dropout

« Disable a random set of neurons (typically 50%

(b) After applying dropout.
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Dropout: intuition

Redundant
Using half the network - half capacity representations

Furry \s\

Hastwoeyes — ™ 4 e

Has a tail

Has paws 7

Has two ears

(b) After applying dropout.



Dropout: intuition

« Using half the network = half capacity
— Redundant representations
— Base your scores on more features

o« Consider it as model ensemble



Dropout: intuition

Two models In one

(b) After applying dropout.
58



Dropout: intuition

« Using half the network = half capacity
— Redundant representations
— Base your scores on more features

o« Consider it as two models In one

— Training a large ensemble of models, each on different
set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons




ime

Dropout: test t

« All neurons are turned on’ - no dropout

Conditions at train
and test time are
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: ] Dropout
Dropout. test time robanilty

e Test 2z =01z + Oyy P-0.5

1
+ Train.  Elz] = 1(910+920

02 +6012 + 650
+610 + 0>y
+612 + Oay)

\¥eight scaling 1

=3 012 + O2y)

iNnference rule




Dropout; verdict

« Efficient bagging method with parameter sharing
o Use !

« Dropout reduces the effective capacity of a model =2
larger models, more training time
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Transfer learning



Transfer learning
Distribution Distribution

Large dataset Small dataset

L Use what has been J
learned for another
setting

64



Transfer learning for images

Low-level Middle-level Top-level
feature feature feature

Zeller and Fergus 2013



Trainedon  Transfer learning

ImageNet

Feature
extraction

—

Donahue 2014, Razavian 2014



Trainedon  Transfer learning

ImageNet

-
Treos ] Decision layers

MaxPool | |

[
| Conv-512 , .
Cenvsz | = P3rts of an object (wheel, window)
e .
| Conv-512 |
[
[
[

a:,,Zﬁ [ Simple geometrical shapes (circles, etc)

MaxPool = =
| Conv-128 |
" Conv-128 |
[ MaxPool p— EdgeS
| Conv-64
[ Conv-64

Donahue 2014, Razavian 2014 '



Trainedon  Transfer learning

ImageNet

TRAIN _ New dataset

with C classes

- FROZEN

SR
(I

Donahue 2014, Razavian 2014



Transfer learning

f the dataset Is big
enough train more
layers with a low
learning rate

TRAIN

FROZEN =

—

SR

Donahue 2014, Razavian 2014

69



For your projects

Find a large dataset related to your problem and train
your network there

OR

Take the pre-trained weights from e.g. ImageNet

Do transfer learning by fine-tuning on you small
datasets
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Basic recipe for
machine learning



Basic recipe for machine learning
« Split your data

validation test

Find your hyperparameters



Basic recipe for machine learning
« Split your data

00% 207% 20%

train validation test

Human level error ... 1%
Bias (or underfitting)

Training set error ... 5%

Variance
Val/Dev set error ... 8% *+ (overfitting)




Basic recipe for machine learning

Bigger model

Training error high? — =————— o onger (Bias)
Yes New model architecture
l,No
. More data
Dev error high? _> Regularization (Variance)

New model architecture

 n

Done!

Credits: Andrew Ng



Basic recipe for machine learning

e You train and test do no come from the same source

00% 407% 1007%

validation test

\ J\ J
I |

Training data (e.g. speech data) Test data (e.g.
speech data inside a
helicopter)

/5



Basic recipe for machine learning

e dev/val and test set must come from same distribution

60% 40% 50%  50%

validation [Ny

\ J\ J
I |

Training data (e.g. speech data) Test data (e.g.
speech data inside a
helicopter)

76



Basic recipe for machine learning

Human levelerror ... 1%t
Blas
Training set error ... 1.1%
Variance
Train-Dev set error .. 15% *

Data mismatch
Test-Dev set error ... 8%

Tect cof oror .85% | Overfitting to dev

/7



Bigger model

Training error high? ———————————) . o onger (Bias)
Y New model architecture
,1 No
More data

Train-Dev error high? =——————— o jrization (Variance)
Yes New model architecture
l,No
Make training data more

Dev error h|gh? — similar to test data. (Traln-teSt data

Dat thesi .
Yes ([?o?n?il: ac?:;l)s;ation.) mlsmatCh)
l No New model architecture
Test error high? ——p More dev set data (Overfit dev
Yes
set)
,1 No
Done!

Credits: Andrew Ng /¢



Administrative Things

« Next Tuesday: Starting with CNN

« Thursday: Solution 2"® exercise, presentation 3



