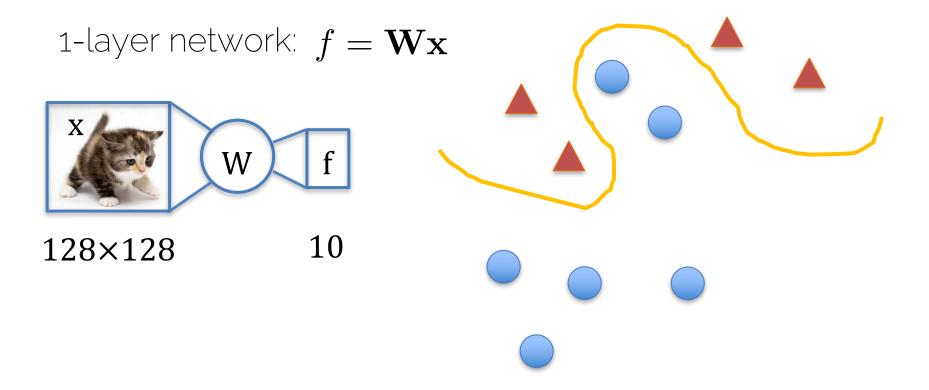
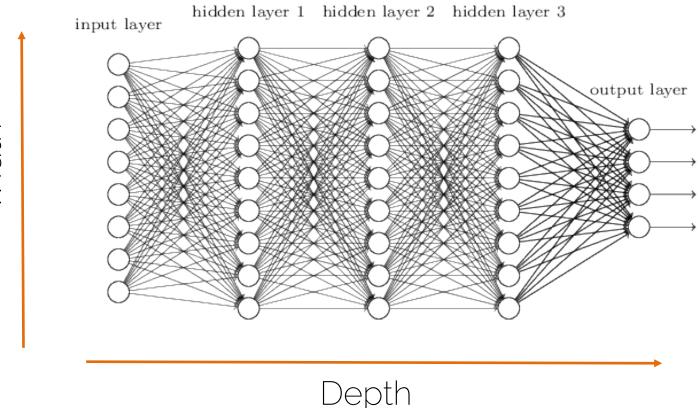


Lecture 5 Recap

Beyond linear



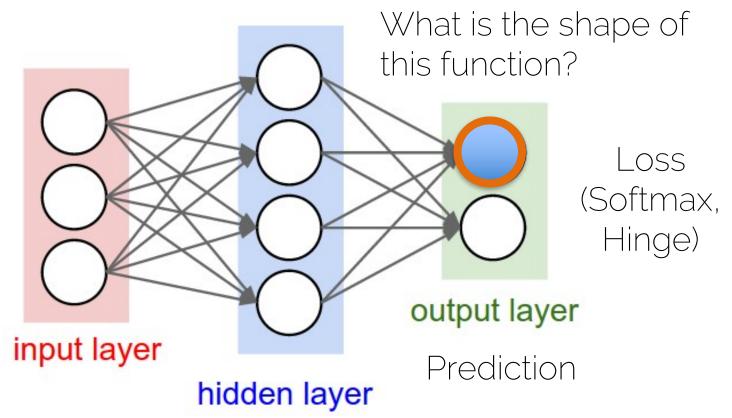
Neural Network

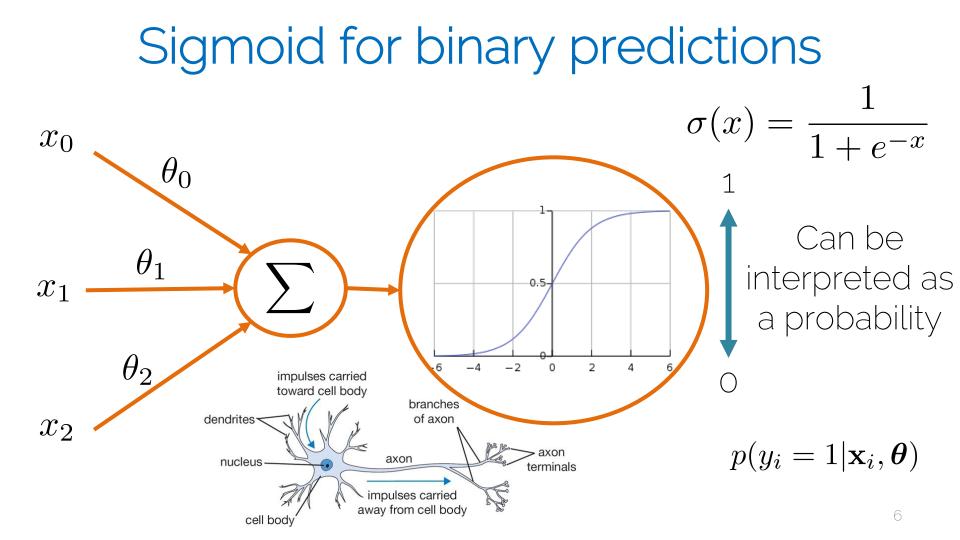


Width

Output functions

Neural networks





Logistic regression

• Optimize using gradient descent

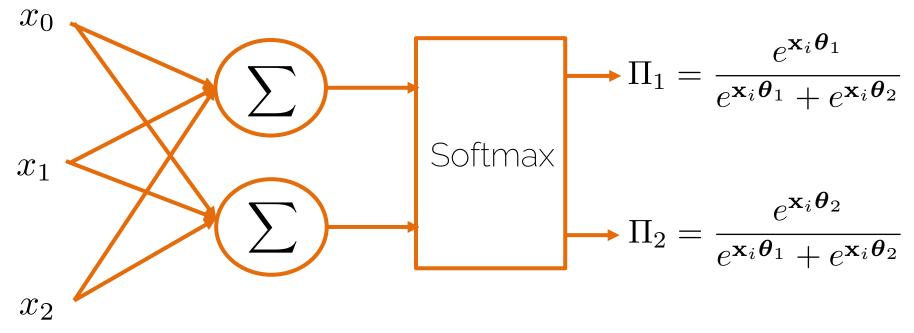
• Saturation occurs only when the model already has the right answer

$$C(\boldsymbol{\theta}) = -\sum_{i=1}^{n} y_i \log(\Pi_i) + (1 - y_i) \log(1 - \Pi_i)$$

Referred to as cross-entropy

Softmax formulation

• What if we have multiple classes?

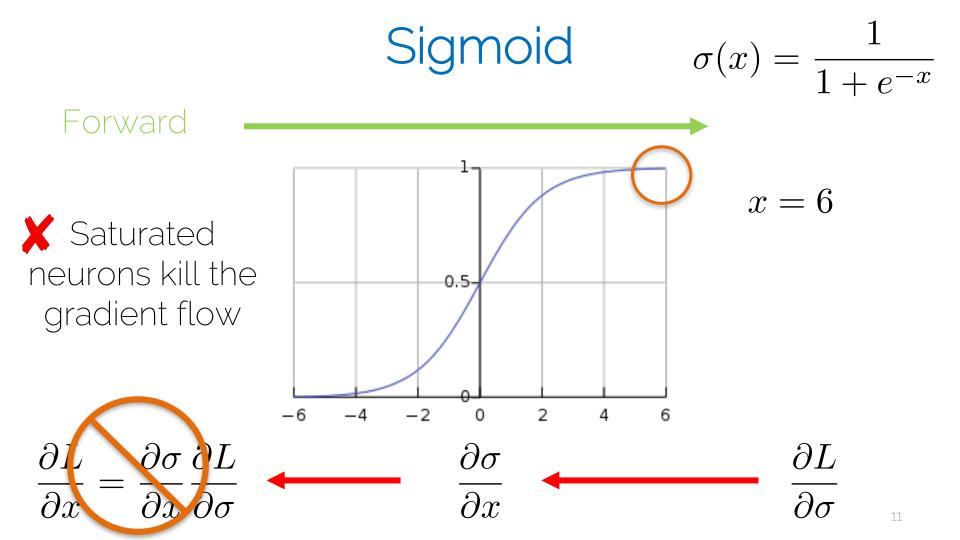


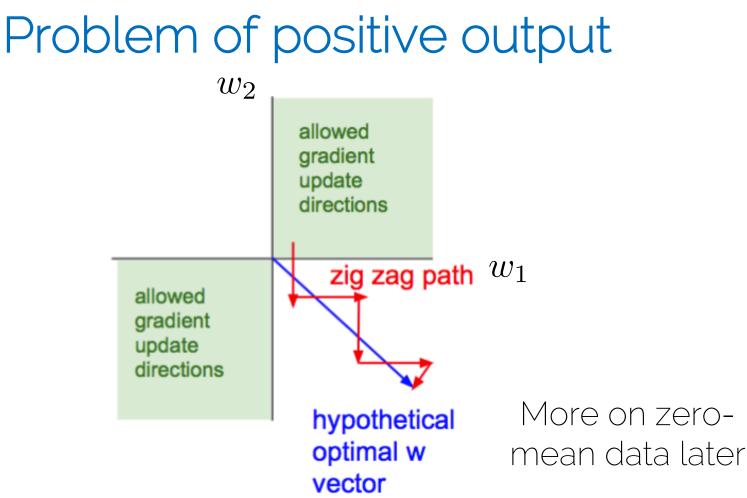
Softmax formulation

- Softmax $p(y_i | \mathbf{x}, \boldsymbol{\theta}) = \underbrace{\frac{e^{\mathbf{x}\boldsymbol{\theta}_i}}{\sum_{k=1}^n e^{\mathbf{x}\boldsymbol{\theta}_k}}}_{k=1} \text{ normalize}$
- Softmax loss (ML)

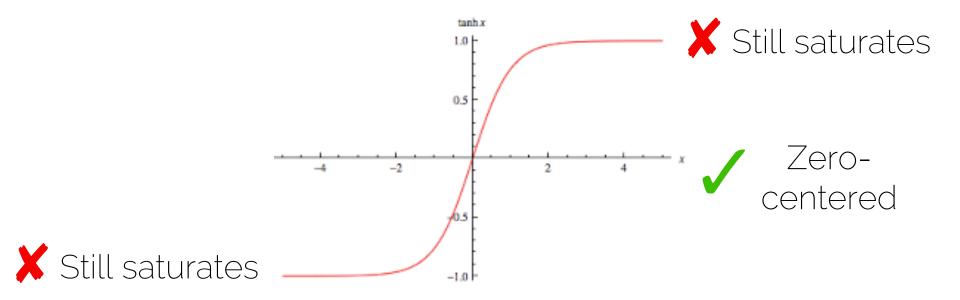
$$L_i = -\log\left(\frac{e^{s_{y_i}}}{\sum_k e^{s_k}}\right)$$

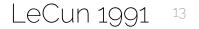
Activation functions



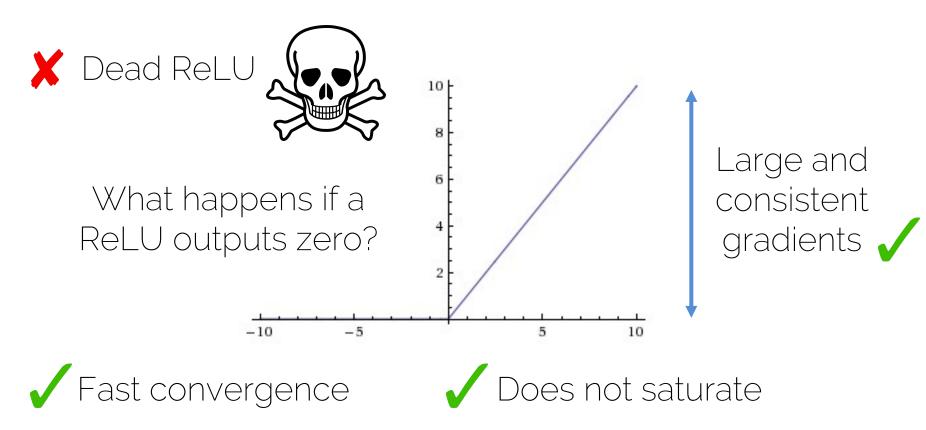


tanh

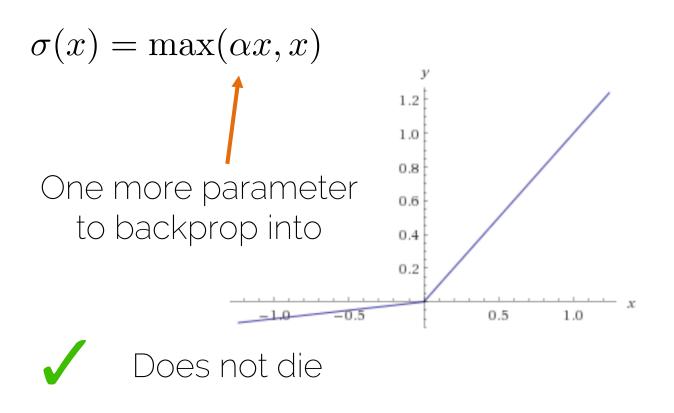




Rectified Linear Units (ReLU)

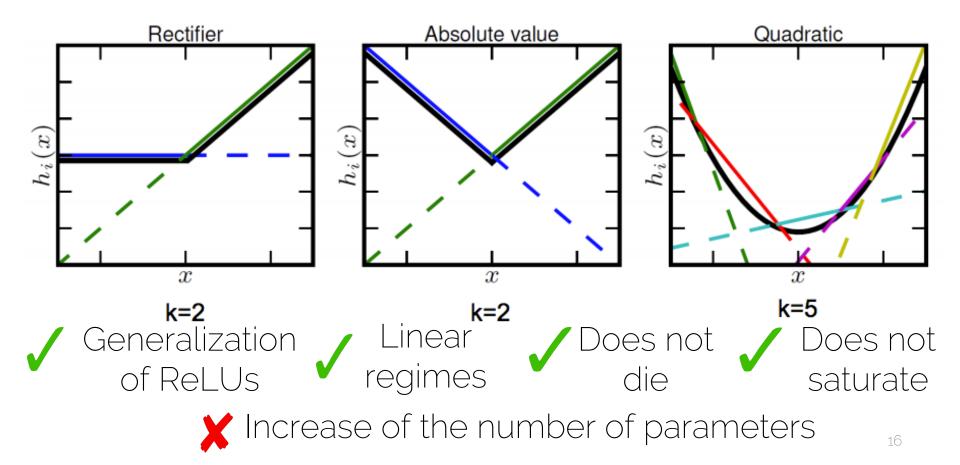


Parametric ReLU

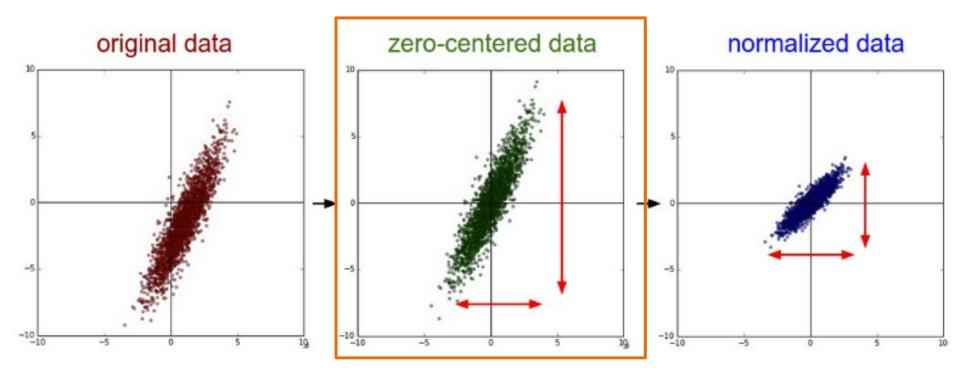


He 2015 ¹⁵

Maxout units

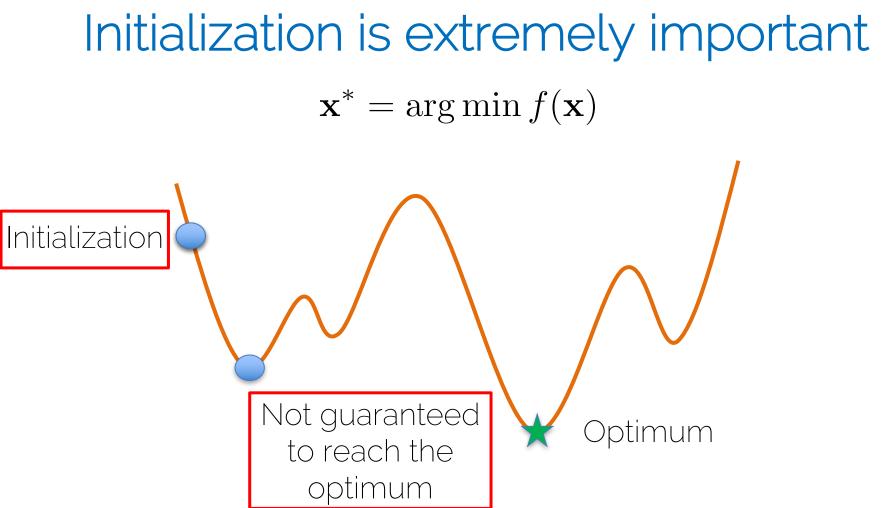


Data pre-processing



For images subtract the mean image (AlexNet) or perchannel mean (VGG-Net) 17

Weight initialization

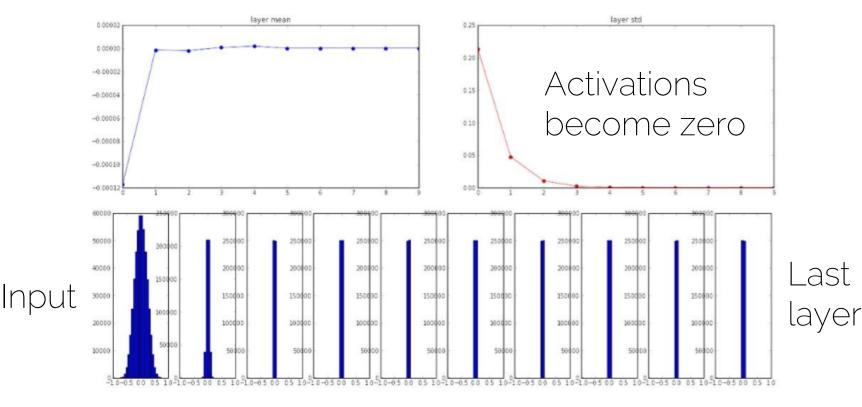


Small random numbers

• Gaussian with zero mean and standard deviation 0.01

- Let us see what happens:
 - Network with 10 layers with 500 neurons each
 - Tanh as activation functions
 - Input unit Gaussian data

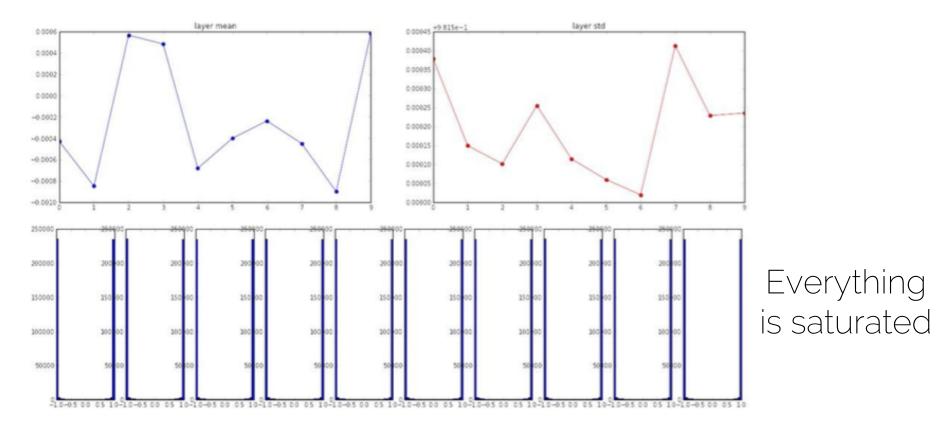
Small random numbers



Forwarc

21

Big random numbers



$$\operatorname{Var}(s) = \operatorname{Var}(\sum_{i}^{n} w_{i} x_{i}) = \sum_{i}^{n} \operatorname{Var}(w_{i} x_{i})$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$

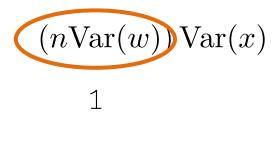
$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

Zero mean

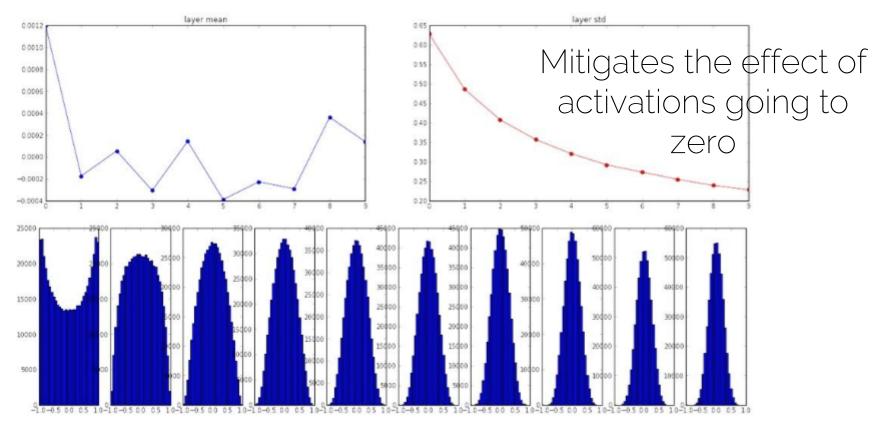
$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$
$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$
$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i}) = (nVar(w)) Var(x)$$
$$Identically distributed_{25}$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i}) = \sum_{i}^{n} Var(w_{i}x_{i})$$
$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$
$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i}) = (n) Var(w) Var(x)$$
Variance gets multiplied by the number of inputs 26

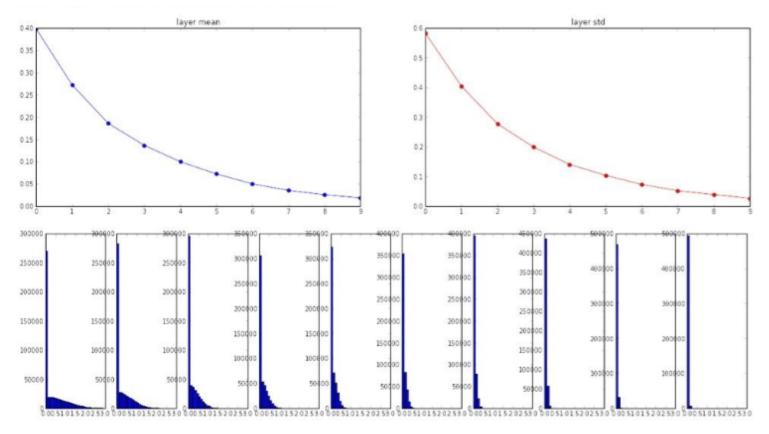
• How to ensure the variance of the output is the same as the input?



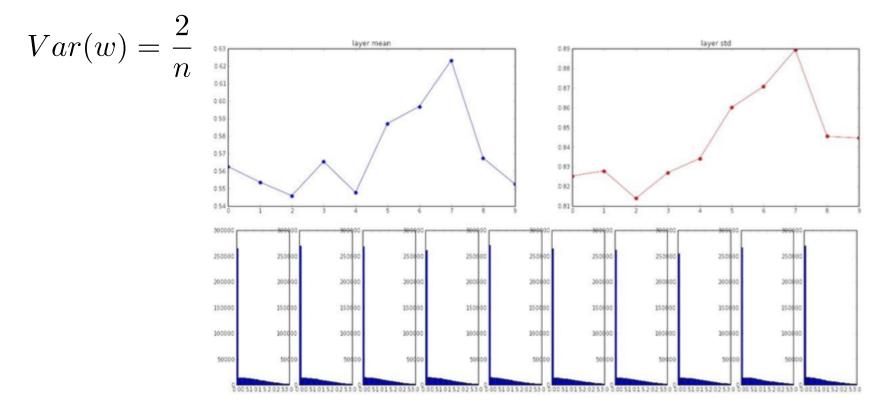
$$Var(w) = \frac{1}{n}$$



Xavier initialization with ReLU



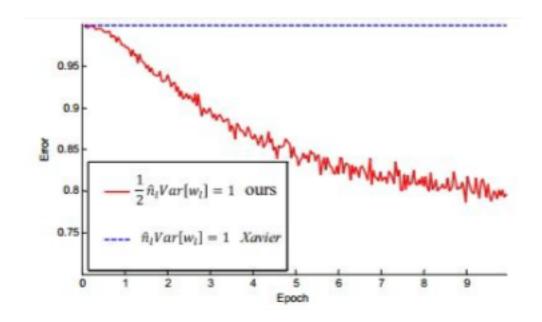
ReLU kills half of the data



He 2015 30

ReLU kills half of the data

$$Var(w) = \frac{2}{n}$$
 It makes a huge difference!

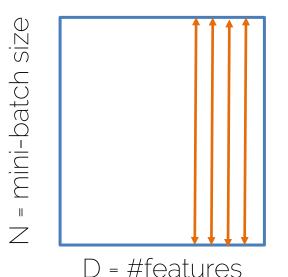


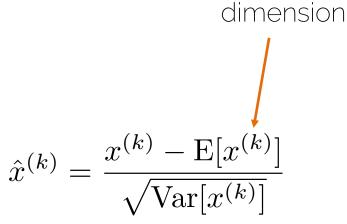
He 2015 31

Tips and tricks

• Use ReLU and Xavier/2 initialization

- Wish: unit Gaussian activations
- Solution: let's do it





• In each dimension of the features, you have a unit dimension

D = #features

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

- In each dimension of the features, you have a unit Gaussian
- Is it ok to treat dimensions separately? Shown empirically that even if features are not decorrelated, convergence is still faster with this method

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

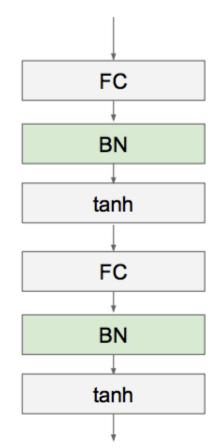
Differentiable function so we can backprop through it....

loffe and Szegedy 2015 ³⁶

Batch normalization

• A layer to be applied after Fully Connected (or Convolutional) layers and before non-linear activation functions

• Is it a good idea to have all unit Gaussians before tanh?



loffe and Szegedy 2015 ³⁷

Batch normalization

• Normalize

$$\hat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\operatorname{Var}[x^{(k)}]}}$$

• Allow the network to change the range

$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

backprop

The network can learn to undo the normalization

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \operatorname{E}[x^{(k)}]$$

loffe and Szegedy 2015 ³⁸

BN for Exercise 2

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_B)^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Input: Network N with trainable parameters Θ ;	
subset of activations $\{x^{(k)}\}_{k=1}^{K}$	
Output: Batch-normalized network for inference, $N_{\rm BN}^{\rm inf}$	
1: $N_{BN}^{tr} \leftarrow N$ // Training BN network	
2: for $k = 1 \dots K$ do	
3: Add transformation $y^{(k)} = \mathrm{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to	
$N_{\rm BN}^{\rm tr}$ (Alg. 1)	
 Modify each layer in N^{tr}_{BN} with input x^(k) to take 	
$y^{(k)}$ instead	
5: end for	
6: Train N_{BN}^{tr} to optimize the parameters $\Theta \cup \{\gamma^{(k)}, \beta^{(k)}\}_{k=1}^{K}$	
7: $N_{BN}^{inf} \leftarrow N_{BN}^{tr}$ // Inference BN network with frozen	
// parameters	
8: for $k = 1K$ do	
9: // For clarity, $x \equiv x^{(k)}, \gamma \equiv \gamma^{(k)}, \mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.	
10: Process multiple training mini-batches B, each of	
size m, and average over them:	
$\mathrm{E}[x] \leftarrow \mathrm{E}_{\mathcal{B}}[\mu_{\mathcal{B}}]$	
$\operatorname{Var}[x] \leftarrow \frac{m}{m-1} \operatorname{E}_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$	
m-1-2 - B	
11: In N_{BN}^{inf} , replace the transform $y = BN_{\gamma,\beta}(x)$ with	
$y = \frac{\gamma}{\sqrt{\operatorname{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \operatorname{E}[x]}{\sqrt{\operatorname{Var}[x] + \epsilon}}\right)$	
V minitia V	
12: end for	
Algorithm 2: Training a Batch-Normalized Network	

Regularization

• Any strategy that aims to

Lower validation error

Increasing training error

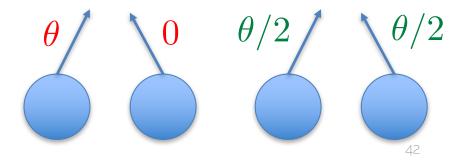
Weight decay

• L² regularization

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \epsilon \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_k, \mathbf{x}^i, \mathbf{y}^i) - \lambda \boldsymbol{\theta}_k^T \boldsymbol{\theta}_k$$

Learning rate Gradient

- Penalizes large weights
- Improves generalization



Data augmentation

• A classifier has to be invariant to a wide variety of transformations

cat

- All Images
- Videos News

Shopping More Settings

0

Sign in

🌷 Q

SafeSearch -

Cute

And Kittens

Clipart

Cute Baby

White Cats And Kittens

Appearance

Illumination

Data augmentation

• A classifier has to be invariant to a wide variety of transformations

• Helping the classifier: generate fake data simulating plausible transformations

Data augmentation

a. No augmentation (= 1 image)

224x224

b. Flip augmentation (= 2 images)

224x224

c. Crop+Flip augmentation (= 10 images)

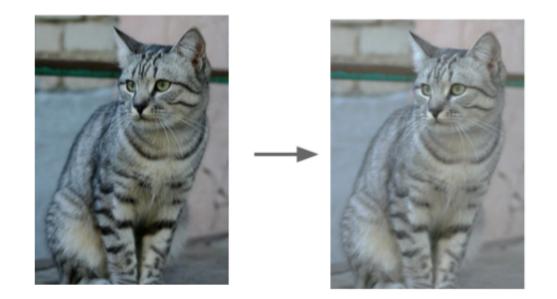
224x224

+ flips

Krizhevsky 2012 46

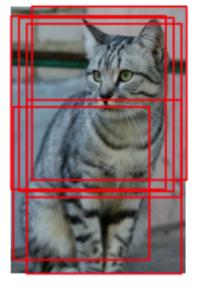
Data augmentation: random crops

• Random brightness and contrast changes



Data augmentation: random crops

- Training: random crops
 - Pick a random L in [256,480]
 - Resize training image, short side L
 - Randomly sample crops of 224x224



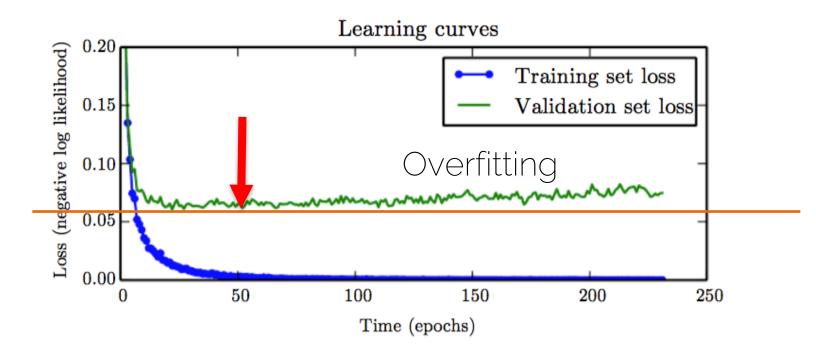
- Testing: fixed set of crops
 - Resize image at N scales
 - 10 fixed crops of 224x224: 4 corners + center + flips

Data augmentation

• When comparing two networks make sure to use the same data augmentation!

Consider data augmentation a part of your network
 design

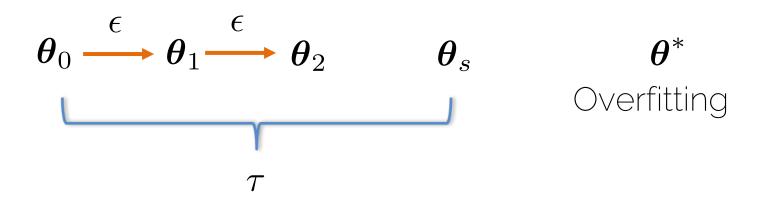
Early stopping



Training time is also a hyperparameter

Early stopping

• Easy form of regularization



Bagging and ensemble methods

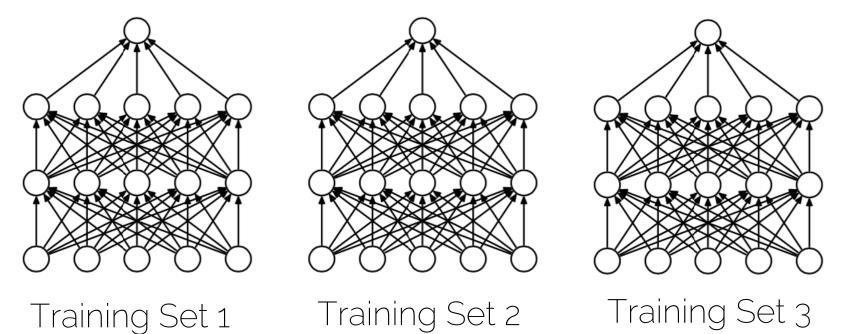
• Train three models and average their results

• Change a different algorithm for optimization or change the objective function

• If errors are uncorrelated, the expected combined error will decrease linearly with the ensemble size

Bagging and ensemble methods

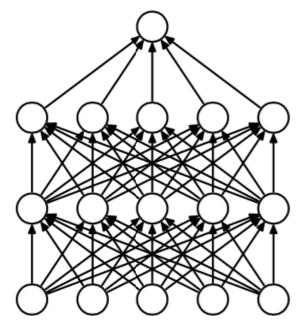
• Bagging: uses k different datasets



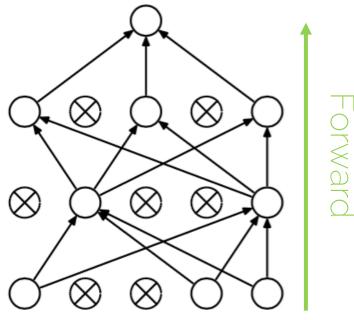
Dropout

Dropout

• Disable a random set of neurons (typically 50%)



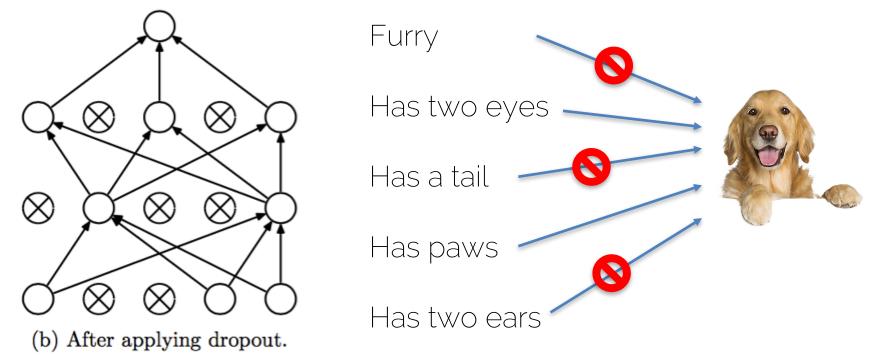
(a) Standard Neural Net



(b) After applying dropout. Srivastava 2014

• Using half the network = half capacity

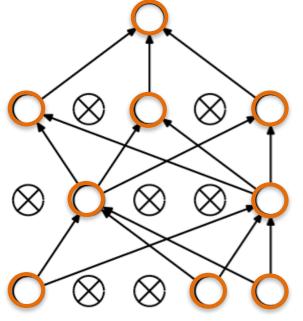
Redundant representations



- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

• Consider it as model ensemble

• Two models in one



(b) After applying dropout.

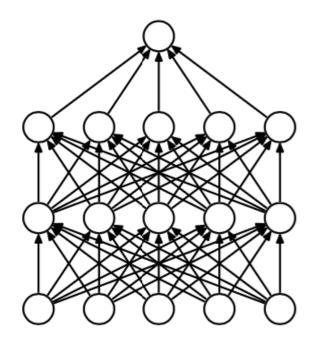
- Using half the network = half capacity
 - Redundant representations
 - Base your scores on more features

- Consider it as two models in one
 - Training a large ensemble of models, each on different set of data (mini-batch) and with SHARED parameters

Reducing co-adaptation between neurons

Dropout: test time

• All neurons are "turned on" – no dropout



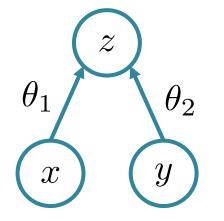
Conditions at train and test time are not the same

Dropout: test time

Dropout probability

p=0.5

• Test:
$$z = \theta_1 x + \theta_2 y$$



Weight scaling inference rule

rain:
$$E[z] = \frac{1}{4}(\theta_1 0 + \theta_2 0 + \theta_1 x + \theta_2 0 + \theta_1 x + \theta_2 y + \theta_1 0 + \theta_2 y + \theta_1 x + \theta_2 y)$$

$$= \frac{1}{2}(\theta_1 x + \theta_2 y)$$

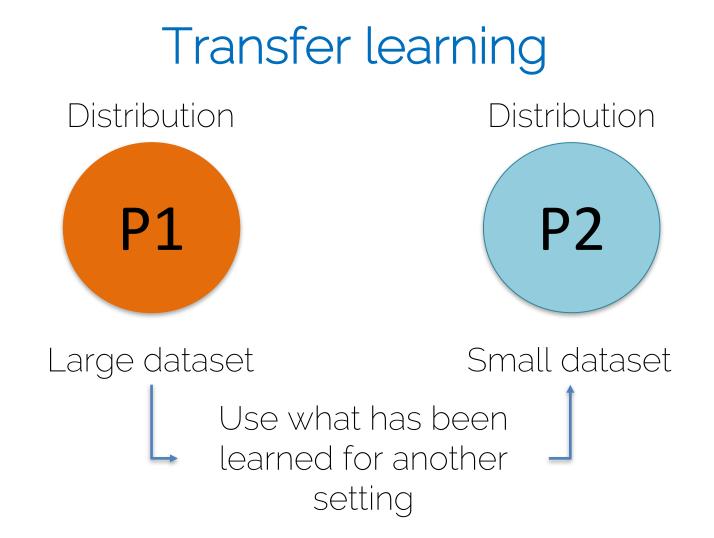
Dropout: verdict

• Efficient bagging method with parameter sharing

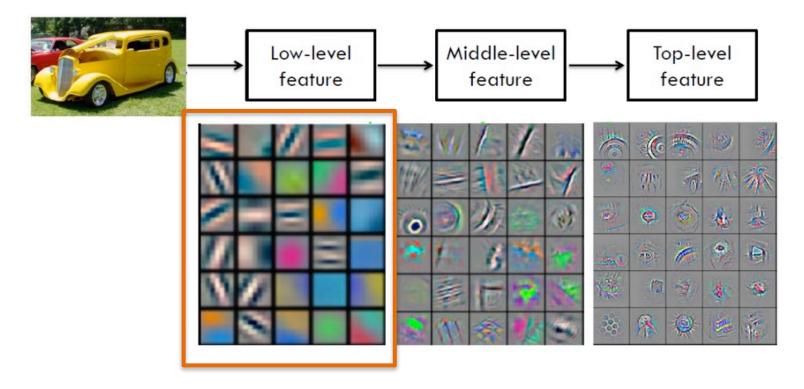
• Use it!

 Dropout reduces the effective capacity of a model → larger models, more training time

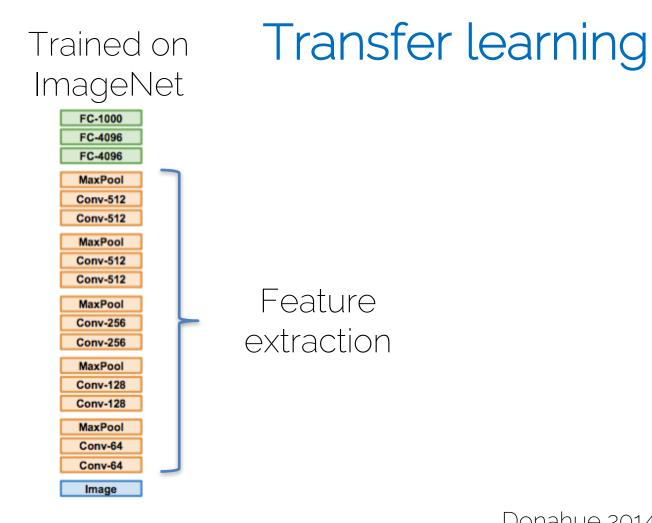
Transfer learning



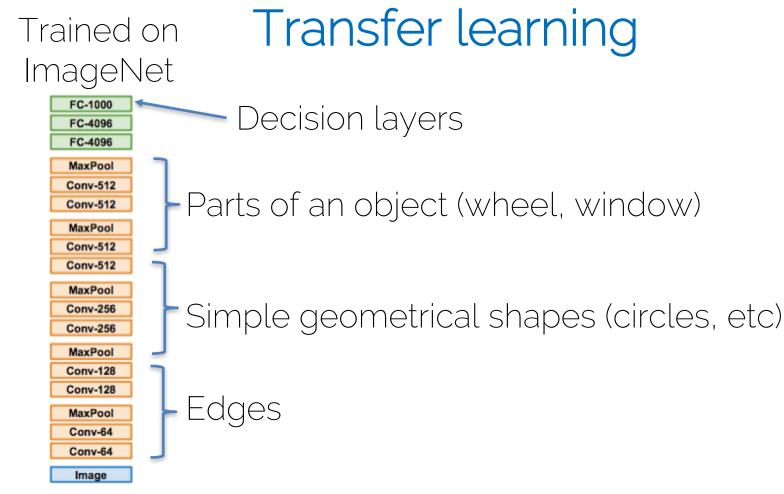
Transfer learning for images

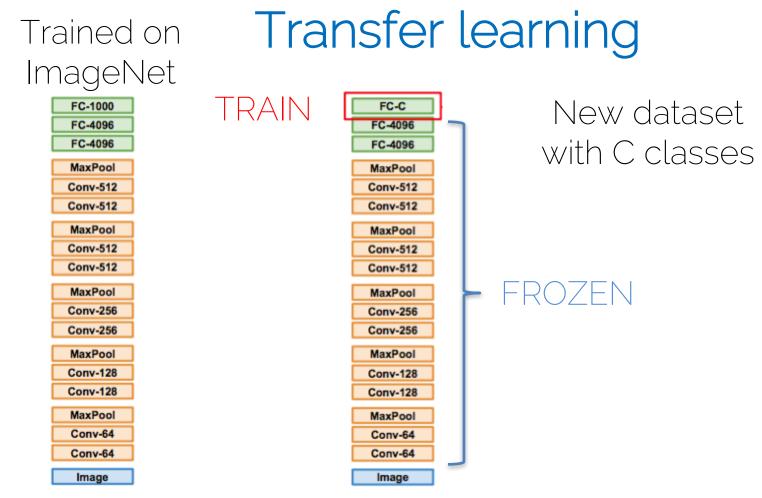


Zeiler and Fergus 2013 65



Donahue 2014, Razavian 2014



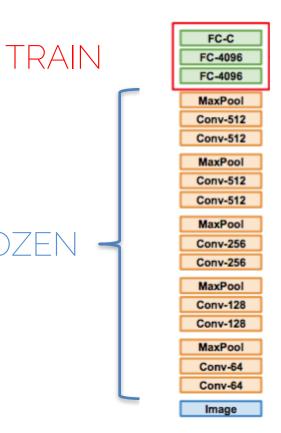


Donahue 2014, Razavian 2014

Transfer learning

FR

If the dataset is big enough train more layers with a low learning rate



Donahue 2014, Razavian 2014

For your projects

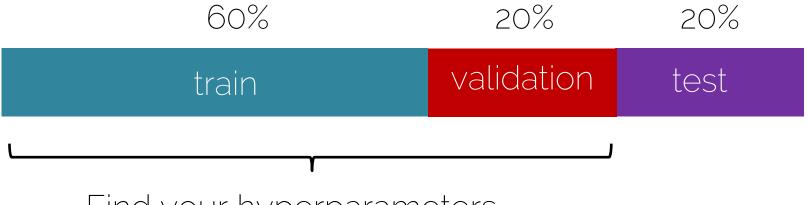
• Find a large dataset related to your problem and train your network there

OR

• Take the pre-trained weights from e.g. ImageNet

• Do transfer learning by fine-tuning on you small datasets

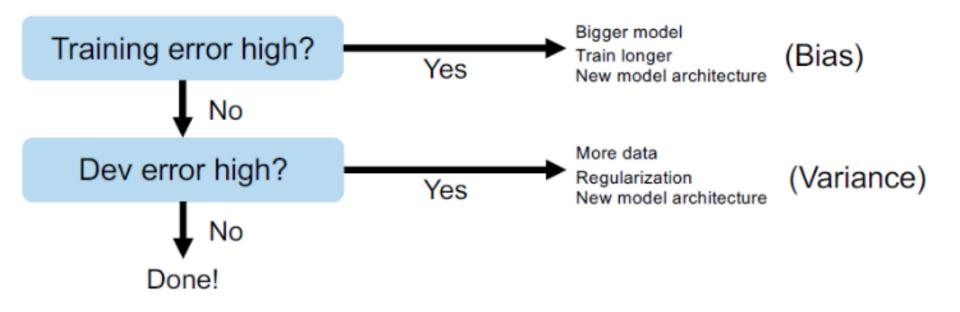
• Split your data



Find your hyperparameters

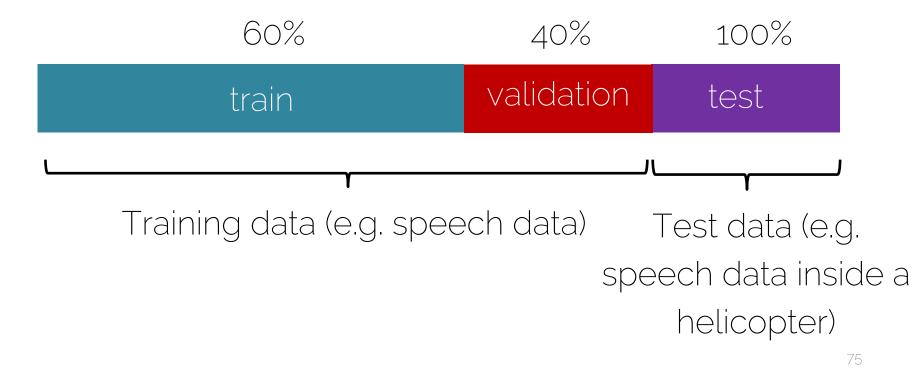
• Split your data

Human level error 1%	<i>Bias</i> (or underfitting)
Training set error 5%	
Val/Dev set error 8%	<i>Variance</i> (overfitting)

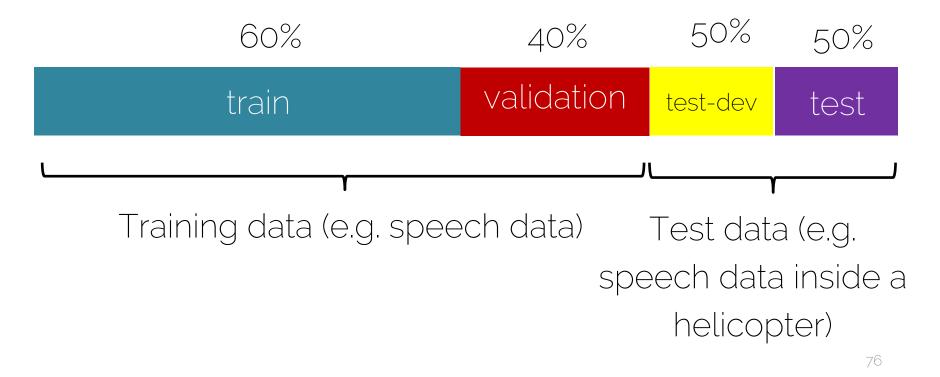


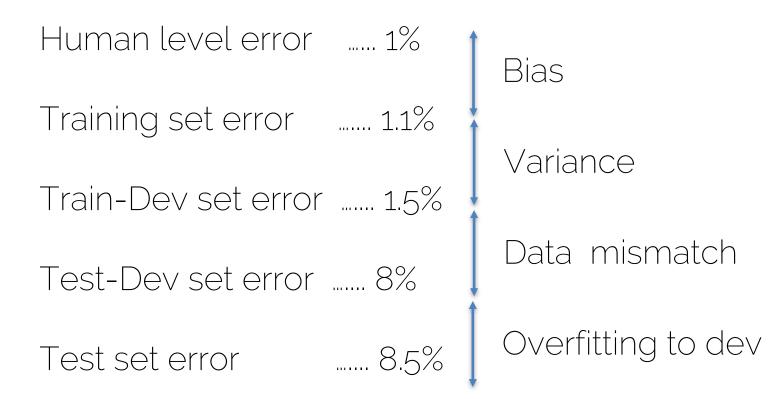
Credits: Andrew Ng 74

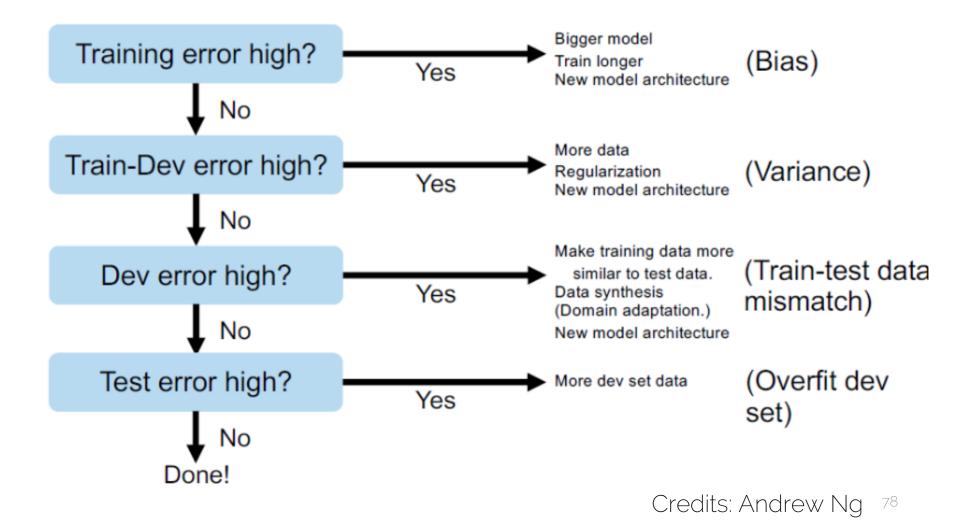
• You train and test do no come from the same source



• dev/val and test set must come from same distribution







Administrative Things

• Next Tuesday: Starting with CNN

• Thursday: Solution 2nd exercise, presentation 3rd