Tll

Lecture 6 Recap

What do we know so far?

input layer
hidden layer 1 hidden layer 2 hidden layer 3

Depth

What do we know so far?

Activation Functions (non-linearities)

ReLU: $\max (0, x)$

Leaky ReLU: $\max (0.1 x, x)$

What do we know so far?

What do we know so far?

SGD Variations (Momentum, etc.)

Minibatch SGD

D = \#features

Why not only more Layers?

- We can not make networks arbitrarily complex
- Why not just go deeper and get better?
- No structure!!
- It's just brute force!
- Optimization becomes hard
- Performance plateaus / drops!

Tा

Convolutional Neural Networks (CNNs)

What are Convolutions?

Convolution of two box functions
Convolution of two Gaussians
application of a filter to a function
the 'smaller' one is typically called the filter kernel

What are Convolutions?

Discrete case: box filter

'Slide' filter kernel from left to right; at each position, compute a single value in the output data

What are Convolutions?

Discrete case: box filter

f	4	3	2	-5	3	5	2	5	5	6
g								1/3	1/3	1/3
$f * g$		3	0	0	1	10/3	4	4	16/3	

$5 \cdot \frac{1}{3}+5 \cdot \frac{1}{3}+6 \cdot \frac{1}{3}=\frac{16}{3}$

What are Convolutions?

Discrete case: box filter

What to do at boundaries?

What are Convolutions?

Discrete case: box filter

4	3	2	-5	3	5	2	5	5	6

$1 / 3$	$1 / 3$	$1 / 3$

$? ?$	3	0	0	1	$10 / 3$	4	4	$16 / 3$	$? ?$

What to do at boundaries?

$10 / 3$								
1) Shrink	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1 0} / \mathbf{3}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{1 6 / 3}$

2) Pad

often ' O^{\prime} | $7 / 3$ | $\mathbf{3}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1 0 / 3}$ | $\mathbf{4}$ | $\mathbf{4}$ | $16 / 3$ | $11 / 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Convolutions on Images

Convolutions on Images

	-5	3	2	-5	3
	4	3	2	1	-3
	1	0	3	3	5
	-2	0	1	4	4
	5	6	7	9	-1
		0	-1	0	
		-1	5	-1	
		0	-1	0	

$$
5 \cdot 2+(-1) \cdot 2+(-1) \cdot 1+(-1) \cdot 3+(-1) \cdot 3=
$$

$$
10-9=1
$$

Convolutions on Images

Convolutions on Images

Convolutions on Images

$\begin{aligned} & \underset{x}{\underset{~}{3}} \\ & \stackrel{\rightharpoonup}{\overrightarrow{0}} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	6	1	8
	-7	9	

$$
5 \cdot 3+(-1) \cdot 2+(-1) \cdot 3+(-1) \cdot 1+(-1) \cdot 0=
$$

$$
15-6=9
$$

Convolutions on Images

$$	-5	3	2	-5	3
	4	3	2	1	-3
	1	0	3	3	5
	-2	0	1	4	4
	5	6	7	9	
$\xrightarrow{\triangle}$		0	-1	0	
		-1	5	-1	
		0	-1	0	

$\begin{aligned} & \text { ๙ } \\ & \text { n } \\ & \stackrel{\rightharpoonup}{7} \\ & \frac{0}{7} \end{aligned}$	6	1	8
	-7	9	2

$$
5 \cdot 3+(-1) \cdot 1+(-1) \cdot 5+(-1) \cdot 4+(-1) \cdot 3=
$$

$$
15-13=2
$$

Convolutions on Images

Convolutions on Images

Convolutions on Images

Convolutions on Images

Input

Convolutions on Images

- How do we get from there to a ConvNet?
- The idea is optimize for filter banks
- Filters are spatially-invariant
- Extract features at locations
- Multiple feature banks per location (see later

Convolutions on Images

Convolutions on Images

$32 \times 32 \times 3$ image (pixels x)

Convolutions on Images

$32 \times 32 \times 3$ image (pixels x)

Convolution Layer

Convolution Layer

Convolution Layer

- A basic layer is defined by
- Filter width and height (depth is implicitly given)
- Number of different filter banks (\#weight sets)
- We will also introduce stride and padding
- Stride: specify filter locations (where?)
- Padding: how to handle with boundaries

CNN Prototype

ConvNet is concatenation of Conv Layers and activations

CNN Prototype

Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]
Slide by LeCun

CNN Prototype

POOL

Convolution Layer

- A basic layer is defined by
- Filter width and height (depth is implicitly given)
- Number of different filter banks (\#weight sets)
- We will also introduce stride and padding
- Stride: specify filter locations (where?)
- Padding: how to handle with boundaries

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Output: 5×5

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Output: 5×5

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Output: 5×5

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Output: 5×5

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Output: 5×5

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Stride: 1
Output: 5×5

Stride of n : apply filter every n-th spatial location; i.e., subsample the image

Convolution Layers: Dimensions

With a stride of 2

Input: 7×7
Filter: 3×3
Stride: 2
Output: 3×3

Convolution Layers: Dimensions

With a stride of 2

Input: 7×7
Filter: 3×3
Stride: 2
Output: 3×3

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Stride: 2
Output: 3×3

Convolution Layers: Dimensions

With a stride of 3

Input: 7×7
Filter: 3×3
Stride: 3
Output: ? ? $\times ?$?

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Stride: 3
Output: ? ? $\times ?$?

Convolution Layers: Dimensions

With a stride of 3

Input: 7×7
Filter: 3×3
Stride: 3
Output: ? ? \times ? ?

Does not really fit; remainder left...
-> Illegal stride for input \& filter size!

Convolution Layers: Dimensions

Input: $N \times N$
Filter: $F \times F$
Stride: S
Output: $\left(\frac{N-F}{S}+1\right) \times\left(\frac{N-F}{S}+1\right)$

$$
\begin{aligned}
& N=7, F=3, S=1: \quad \frac{7-3}{1}+1=5 \\
& N=7, F=3, S=2: \quad \frac{7-3}{2}+1=3 \\
& N=7, F=3, S=3: \quad \frac{7-3}{3}+1=2.3333
\end{aligned}
$$

Convolution Layers: Dimensions

Input: 7×7
Filter: 3×3
Padding: 1
Stride: 1
Output: 7×7
To preserve (spatial) size, set padding to $P=\frac{F-1}{2}$

Most common is 'zero' padding

Output Size: $\left(\frac{N+2 \cdot P-F}{S}+1\right) \times\left(\frac{N+2 \cdot P-F}{S}+1\right)$

Convolution Layers: Dimensions

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7×7
Filter: 3×3
Padding: 1
Stride: 1
Output: 7×7
To preserve (spatial) size, set padding to $P=\frac{F-1}{2}$

Most common is 'zero' padding
What is the output if we set

$$
P=2 ?
$$

Convolution Layers: Dimensions

Shrinking down so quickly (32->28->24->20) is typically not a good idea.

Convolution Layers: Dimensions

Example

Input image: $32 \times 32 \times 3$
10 filters 5×5 Stride 1
Pad 2 Depth of 3 is implicitly given

$$
\begin{aligned}
& \text { Output size is: } \\
& \frac{32+2 \cdot 2-5}{1}+1=32
\end{aligned}
$$

Remember
Output: $\left(\frac{N+2 \cdot P-F}{S}+1\right) \times\left(\frac{N+2 \cdot P-F}{S}+1\right)$
I.e., $32 \times 32 \times 10$

Convolution Layers: Dimensions

Example

```
Input image: 32\times32\times3
10}\mathrm{ filters 5 < 5
Stride 1
Pad 2
```


Output size is:

$$
\frac{32+2 \cdot 2-5}{1}+1=32
$$

$$
\text { l.e., } 32 \times 32 \times 10
$$

Remember
Output: $\left(\frac{N+2 \cdot P-F}{S}+1\right) \times\left(\frac{N+2 \cdot P-F}{S}+1\right)$

Convolution Layers: Dimensions

Example

```
Input image: 32\times32\times3
10 filters 5 > 5
    Stride 1
    Pad 2
```


Number of parameters (weights):
Each filter has $5 \times 5 \times 3+1=76$ params
(+1 for bias)
$->76 \cdot 10=760$ params in layer

Convolution Layers: Dimensions

- Input is a volume of size $W_{\text {in }} \times H_{\text {in }} \times D_{\text {in }}$
- Four hyperparameters
- Number of filters K

Common settings:
$K={ }^{\prime}$ powers of 2^{\prime}, e. g. , $32,64,128,512$

- Spatial filter extent F
- Stride S
- Zero padding P
- Output volume is of size $W_{\text {out }} \times H_{\text {out }} \times D_{\text {out }}$
- $W_{\text {out }}=\frac{W_{\text {in }}-F+2 \cdot P}{S}+1$
- $H_{\text {out }}=\frac{H_{\text {in }}-F+2 \cdot P}{S}+1$
- $D_{\text {out }}=K$
- There are $F \cdot F \cdot D_{\text {in }}$ weights per filter; i.e., a total of $\left(F \cdot F \cdot D_{i n}\right) \cdot K$ weights and K biases
- In the output volume, the D-th depth slice of size $\left(W_{\text {out }} \times H_{\text {out }}\right)$ is the result of the convolution of the D-th over the input volume with a stride of S, and offset by its bias

Convolution Layers: Dimensions

- 1×1 Convolution is actually pretty common

Conv Layer in Torch

SpatialConvolution

```
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
```

Applies a 2D convolution over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (nInputPlane x height x width).

The parameters are the following:

- nInputPlane : The number of expected input planes in the image given into forward().
- noutputPlane : The number of output planes the convolution layer will produce.
- kW : The kernel width of the convolution
- kH : The kernel height of the convolution
- dw : The step of the convolution in the width dimension. Default is 1 .
- dH : The step of the convolution in the height dimension. Default is 1 .
- padw : The additional zeros added per width to the input planes. Default is 0 , a good number is $(\mathrm{kW}-1) / 2$.
- padh : The additional zeros added per height to the input planes. Default is padw, a good number is (kH-1)/2 .

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3D tensor nInputPlane x height x width, the output image size will be noutputPlane x oheight x owidth where

```
owidth = floor((width + 2*padW - kW) / dW + 1)
oheight = floor ((height + 2* padH - kH) / dH + 1)
```


Convolutional Neural Network

POOL

Pooling Layer

Pooling Layer: Max Pooling

Single depth slice of input

3	1	3	5
6	0	7	9
3	2	1	4
0	2	4	3

Pooling Layer

- Conv Layer = 'Feature Extraction'
- Computes a feature in a given region
- Pooling Layer = 'Feature Selection'
- Picks the strongest activation in a region

Pooling Layer

- Input is a volume of size $W_{\text {in }} \times H_{\text {in }} \times D_{\text {in }}$
- Four hyperparameters Filter count and padding - Spatial filter extent $F \quad$ make no sense here
- Stride S
- Output volume is of size $W_{\text {out }} \times H_{\text {out }} \times D_{\text {out }}$
$-W_{\text {out }}=\frac{W_{\text {in }}-F}{S}+1$
- $H_{\text {out }}=\frac{H_{\text {in }}-F}{S}+1$
- $D_{\text {out }}=D_{\text {in }}$
- Does not contain parameters; e.g., its fixed function

Pooling Layer

- Input is a volume of size $W_{\text {in }} \times H_{\text {in }} \times D_{\text {in }}$
- Four hyperparameters
- Spatial filter extent F

Common settings:

- Stride S

$$
\begin{aligned}
& F=2, S=2 \\
& F=3, S=2
\end{aligned}
$$

- Output volume is of size $W_{\text {out }} \times H_{\text {out }} \times D_{\text {out }}$
$-W_{\text {out }}=\frac{W_{\text {in }}-F}{S}+1$
- $H_{\text {out }}=\frac{H_{\text {in }}-F}{S}+1$
- $D_{\text {out }}=D_{\text {in }}$
- Does not contain parameters; e.g., its fixed function

Convolutional Neural Network

POOL

Fully-Connected Layer (FC)

- Same as what we had in 'ordinary' Neural Networks
- i.e., set of hidden layers
- Brute-force connections (everything with everything)

Convolutions vs Fully-Connected

- In contrast to fully-connected layers, we want to restrict the degrees of freedom
- FC is somewhat brute force
- Convolutions are structured
- Sliding window to with the same filter parameters to extract image features
- Concept of weight sharing
- Extract same features independent of location

Convolutional Neural Network

- Turns out that CNNs are similar to the visual cortex:

[Hubel \& Wiesel, 59, 62, 68, ...]

Test Benchmarks

- Image Net Dataset:

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

Russakovsky et al. (out of FeiFei Li's lab)

CNN Architectures: LeNet-5

Conv filters of 5×5, stride of 1
Subsampling (i.e., pooling) of 2×2 with stride of 2
CNN Architectures: Conv -> Pool -> Conv -> Pool -> Conv -> FC

CNN Architectures: AlexNet

[Krizhevskv et al. 2012]

Input: $227 \times 227 \times 3$ images
Conv1 -> MaxPool1 -> Norm1 -> Conv2 -> MaxPool2 -> Norm2 ->
-> Conv3 -> Conv4 -> Conv5 -> Maxpool3 -> FC6 -> FC7 -> FC8
First use of ReLU!

CNN Architectures: AlexNet

[Krizhevskv et al. 2012]

Max pooling

Input: $227 \times 227 \times 3$ images
First layer:

- 96 filters of 11×11 applied at stride 4
- Output: $55 \times 55 \times 96$
- Parameters: $(11 \cdot 11 \cdot 3+1) \cdot 96=35 K$

CNN Architectures: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227×227×3] INPUT
[55×55×96] CONV1: 96 11×11 filters at stride 4, pad o [27×27×96] MAX POOL1: 3×3 filters at stride 2
[27×27×96] NORM1: Normalization layer
[27×27×256] CONV2: 2565×5 filters at stride 1, pad 2 [13×13×256] MAX POOL2: 3×3 filters at stride 2 [13×13×256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1 [13×13×384] CONV4: 3843×3 filters at stride 1, pad 1 [13×13×256] CONV5: 2563×3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3×3 filters at stride 2

- First use of ReLu
- Norm layers (not used today)
- Heavy data augmentation
- Dropout 0.5
- Batch size of 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 when accuracy plateaus
- L2 weight decay 5e-4
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CNN Architectures AlexNet

[Krizhevsky et al. 2012]

> 7CNN Ensemble
> ImageNet top 5 error: 18.2%-> 15.4\%

CNN Architectures: ZFNet

[Zeiler and Fergus 2013]

Input Image

Layer 2

Layer 6 Layer 7
class
softmax

Similar to AlexNet
Conv1: 11×11 stride of 4 changed to 7×7 stride of 2
Conv3,4,5: instead of $384,384,256$ filters use 512, 1024, 512

CNN Architectures: ZFNet

[Zeiler and Fergus 2013]

Input Image

Layer 3

Layer 6 Layer 7
class
softmax

Ensemble

ImageNet top 5 error: 15.4\% -> 14.8\%

CNN Architectures: VGGNet

ConvNet Configuration					
A	A-LRN	B	C	D	E
11 weight layers layers	$\begin{gathered} \hline 11 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} 13 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	16 weight layers	16 weight layers	19 weight layers
input (224×224 RGB image					
conv3-64	$\begin{gathered} \hline \text { conv3-64 } \\ \text { LRN } \end{gathered}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	conv3-64 conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool					
conv3-128	conv3-128	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline \text { conv3-128 } \\ \text { conv3-128 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$
maxpool					
$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	conv3-256 conv3-256	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$
maxpool					
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \hline \end{aligned}$
maxpool					
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	conv3-512 conv3-512 conv3-512	$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Table 2: Number of parameters (in millions).

Network	A,A-LRN	B	C	D	E
Number of parameters	133	133	134	138	144

CNN Architectures: VGGNet

INPUT: [224×224×3] memory: $224^{*} 224^{*} 3=150 \mathrm{~K}$ params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: $(3 * 3 * 3) * 64=1,728$
Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112×112x128] memory: $112 * 112^{*} 128=1.6 \mathrm{M}$ params: $(3 * 3 * 64)^{*} 128=73,728$
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: $(3 * 3 * 128) * 128=147,456$
Most memory is in

POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: $(3 * 3 * 128) * 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $(3 * 3 * 256)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [$28 \times 28 \times 256$] memory: $28 * 28 * 256=200 \mathrm{~K}$ params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3 * 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [28×28x512] memory: $28^{* 28 * 512=400 K ~ p a r a m s: ~}(3 * 3 * 512)^{*} 512=2,359,296$
POOL2: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: $(3 * 3 * 512) * 512=2,359,296$
CONV3-512: [14×14x512] memory: 14*14*512=100K params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14x14x512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
Most params are in late FC

POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: $7 * 7 * 512 * 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$
TOTAL memory: 24 M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138 M parameters

CNN Architectures: GoogLeNet

 [Szegedy et al. 2014]

22 Layers + Inception module
Ensemble ImageNet top 5 error: 6.7\%

CNN Architectures: GoogLeNet

[Szegedy et al. 2014]

type	$\begin{gathered} \hline \text { patch size/ } \\ \text { stride } \\ \hline \end{gathered}$	output size	depth	$\# 1 \times 1$	$\# 3 \times 3$ reduce	$\# 3 \times 3$	\#5 $\times 5$ reduce	$\# 5 \times 5$	$\begin{aligned} & \text { pool } \\ & \text { proj } \end{aligned}$	params	ops
convolution	$7 \times 7 / 2$	$112 \times 112 \times 64$	1							2.7 K	34 M
max pool	$3 \times 3 / 2$	$56 \times 56 \times 64$	0								
convolution	$3 \times 3 / 1$	$56 \times 56 \times 192$	2		64	192				112 K	360M
max pool	$3 \times 3 / 2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159 K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380 K	304M
max pool	$3 \times 3 / 2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364 K	73 M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437 K	88 M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463 K	100 M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580 K	119 M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170 M
max pool	$3 \times 3 / 2$	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54 M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388 K	71 M
avg pool	$7 \times 7 / 1$	$1 \times 1 \times 1024$	0								
dropout (40\%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000K	1M
softmax		$1 \times 1 \times 1000$	0								

Only 5 mio params! No FC Layers

About 12x less param than AlexNet; 2x more compute 6.7% vs 16.4%

CNN Architectures: ResNet

[He et al. 2015]

CNN Architectures: ResNet

[He et al. 2015]

34-layer residual
CNN Architectures: ResNet

- Batch norm after every Conv Layer
- Xavier/2 init by He et al.
- SGD + Momentum (0.9)
- Learning rate 0.1, divided by 10 when plateau
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout!

CNN Architectures

CNN Architectures: ResNet

[He et al. 2015]

- What Conv Layers do spatially, ResNet and Inception models do across layers (kind of)

MSRA @ ILSVRC \& COCO 2015 Competitions

- 1st places in all five main tracks
- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16\% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11\% better than 2nd
- COCO Segmentation: 12% better than $2 n d$

CNN Architectures

CNN Architectures

http://image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf

History of Conv Nets

- LeNet-5 [LeCun et al. 98]
- AlexNet [Krishevsky et al. 12]
- ZFNet [Zeiler and Fergus 13]
- VGGNet [Simonyan and Zisserman 14]
- 'Advanced' Architectures
- GoogLeNet [Szegedy et al. 14]
- ResNet [He et al. 15]
- XceptionNet [Chollet 17]

CNN Architectures

- Summary:
- ConvNets stack Conv, Pool, FC
- Trend towards smaller filters and deeper
- Trend towards removing Pool and FC
- I.e., only conv -> 'fully-convolutional'
- ResNet and InceptionNet architectures crush all!
- Need to fast forward gradients ©

Administrative Things

- Evaluation starts!
- Next Tuesday Dec 12th: More on ConvNets!
- This Thursday Dec $7^{\text {th }}$: No Tutorial (Dies Academicus)

