
Lecture 6 Recap

What do we know so far?

Depth

W
id

th

What do we know so far?

Activation Functions (non-linearities)

Sigmoid: 𝜎 𝑥 =
1

(1+𝑒−𝑥)

tanh: tanh 𝑥

ReLU: max 0, 𝑥

Leaky ReLU: max 0.1𝑥, 𝑥

What do we know so far?

𝑤0

𝑥0

𝑤1

𝑥1

𝑏

*−1+
1

𝑥
𝑒𝑥

∗

∗

+

2.00

−1.00

−2.00

−3.00

−2.00

6.00

+1

4.00

−3.00

−1.001.00 0.37 1.37 0.73

1.00−0.53−0.53−0.200.20

0.20

0.20

0.20

0.20

−0.20

−0.39

−0.39

−0.59

Backpropagation

What do we know so far?

Minibatch SGD

D = #features

N
=

m
in

i-
b

at
ch

 s
iz

e

SGD Variations (Momentum, etc.)

Why not only more Layers?
• We can not make networks arbitrarily complex

– Why not just go deeper and get better?

– No structure!!
– It’s just brute force!
– Optimization becomes hard
– Performance plateaus / drops!

Convolutional Neural
Networks (CNNs)

What are Convolutions?

𝑓 ∗ 𝑔 = න

−∞

∞

𝑓 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏

𝑓 = red
𝑔 = blue

𝑓 ∗ 𝑔 = green

Convolution of two box functions Convolution of two Gaussians

application of a filter to a function
the ‘smaller’ one is typically called the filter kernel

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6𝑓

Discrete case: box filter

1/3 1/3 1/3𝑔

‘Slide’ filter kernel from left to right; at each position,
compute a single value in the output data

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

1/3 1/3 1/3

3 0 0 1 10/3 4 4 16/3

𝑓

𝑔

𝑓 ∗ 𝑔

Discrete case: box filter

5 ⋅
1

3
+ 5 ⋅

1

3
+ 6 ⋅

1

3
=
16

3

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?

What are Convolutions?

4 3 2 -5 3 5 2 5 5 6

?? 3 0 0 1 10/3 4 4 16/3 ??

Discrete case: box filter

1/3 1/3 1/3

What to do at boundaries?

3 0 0 1 10/3 4 4 16/31) Shrink

2) Pad
often ‘0’

7/3 3 0 0 1 10/3 4 4 16/3 11/3

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6

O
ut

p
ut

 3
x3

5 ⋅ 3 + −1 ⋅ 3 + −1 ⋅ 2 + −1 ⋅ 0 + −1 ⋅ 4 =
15 − 9 = 6

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1

O
ut

p
ut

 3
x3

5 ⋅ 2 + −1 ⋅ 2 + −1 ⋅ 1 + −1 ⋅ 3 + −1 ⋅ 3 =
10 − 9 = 1

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

O
ut

p
ut

 3
x3

5 ⋅ 1 + −1 ⋅ (−5) + −1 ⋅ (−3) + −1 ⋅ 3 + −1 ⋅ 2 =
5 + 3 = 1

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

-7

O
ut

p
ut

 3
x3

5 ⋅ 0 + −1 ⋅ 3 + −1 ⋅ 0 + −1 ⋅ 1 + −1 ⋅ 3 =
0 − 7 = −7

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

-7 9

O
ut

p
ut

 3
x3

5 ⋅ 3 + −1 ⋅ 2 + −1 ⋅ 3 + −1 ⋅ 1 + −1 ⋅ 0 =
15 − 6 = 9

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

-7 9 2

O
ut

p
ut

 3
x3

5 ⋅ 3 + −1 ⋅ 1 + −1 ⋅ 5 + −1 ⋅ 4 + −1 ⋅ 3 =
15 − 13 = 2

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

-7 9 2

-4O
ut

p
ut

 3
x3

5 ⋅ 0 + −1 ⋅ 0 + −1 ⋅ 1 + −1 ⋅ 6 + −1 ⋅ (−2) =
0 − 4 = −4

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

-7 9 2

-4 -9O
ut

p
ut

 3
x3

5 ⋅ 1 + −1 ⋅ 3 + −1 ⋅ 4 + −1 ⋅ 7 + −1 ⋅ 0 =
5 − 14 = −9

Convolutions on Images

-5 3 2 -5 3

4 3 2 1 -3

1 0 3 3 5

-2 0 1 4 4

5 6 7 9 -1

0 -1 0

-1 5 -1

0 -1 0

Im
ag

e
5x

5

K
er

ne
l 3

x3

6 1 8

-7 9 2

-4 -9 3O
ut

p
ut

 3
x3

5 ⋅ 4 + −1 ⋅ 3 + −1 ⋅ 4 + −1 ⋅ 9 + −1 ⋅ 1 =
20 − 17 = 3

Convolutions on Images

Input
Edge detection
−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen
0 −1 0
−1 5 −1
0 −1 0

Mean (Box)
1

9

1 1 1
1 1 1
1 1 1

Gaussian blur
1

16

1 2 1
2 4 2
1 2 1

Convolutions on Images

• How do we get from there to a ConvNet?
– The idea is optimize for filter banks
– Filters are spatially-invariant
– Extract features at locations
– Multiple feature banks per location (see later

Convolutions on Images

Images have depth: e.g., RGB -> 3 channels

32 × 32 × 3 image

32

32

3

width height depth

3
5

5

5 × 5 × 3 filter
Convolve filter with image
i.e., ‘slide’ over it and:
-> apply filter at each location
-> dot products

Depth dimension *must* match;
i.e., filter extends the full depth of the input

Convolutions on Images

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1 number:
dot product between filter weights 𝑤
and 𝑥𝑖 − 𝑡ℎ chunk of the image
Here: 5 ⋅ 5 ⋅ 3 = 75-dim dot product + bias

𝑧𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏

5 × 5 × 3 5 × 5 × 3 1

Convolutions on Images

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

Convolve

slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ;
w/o padding, there are
28 × 28 locations

Convolution Layer

32

32

3

3
5

5

32 × 32 × 3 image

5 × 5 × 3 filter

1

28

28

activation maps

Convolve

1

Let’s apply a different filter
with different weights!

Convolution Layer

32

32

3

32 × 32 × 3 image

5
28

28

activation maps

Convolve

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”

Convolution Layer
• A basic layer is defined by

– Filter width and height (depth is implicitly given)
– Number of different filter banks (#weight sets)

• We will also introduce stride and padding
– Stride: specify filter locations (where?)
– Padding: how to handle with boundaries

CNN Prototype
ConvNet is concatenation of Conv Layers and activations

32

32

3

28

28

5

24

24

8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5 filters
5 × 5 × 3

8 filters
5 × 5 × 5

12 filters
5 × 5 × 8

Input Image

20

CNN Prototype

Slide by LeCun

CNN Prototype

Slide by Karpathy

Convolution Layer
• A basic layer is defined by

– Filter width and height (depth is implicitly given)
– Number of different filter banks (#weight sets)

• We will also introduce stride and padding
– Stride: specify filter locations (where?)
– Padding: how to handle with boundaries

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Output: 5 × 5

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Output: 5 × 5

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Output: 5 × 5

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Output: 5 × 5

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Output: 5 × 5

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Stride: 1
Output: 5 × 5

With a stride of 1

Stride of n: apply filter
every n-th spatial location;
i.e., subsample the image

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Stride: 2
Output: 3 × 3

With a stride of 2

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Stride: 2
Output: 3 × 3

With a stride of 2

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Stride: 2
Output: 3 × 3

With a stride of 2

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Stride: 3
Output: ? ? × ? ?

With a stride of 3

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Stride: 3
Output: ? ? × ? ?

With a stride of 3

Convolution Layers: Dimensions
Im

ag
e

7x
7

Input: 7 × 7
Filter: 3 × 3
Stride: 3
Output: ? ? × ? ?

With a stride of 3

Does not really fit; remainder left…
-> Illegal stride for input & filter size!

Convolution Layers: Dimensions
In

p
ut

 h
ei

g
ht

 o
f N

Input: 𝑁 × 𝑁
Filter: 𝐹 × 𝐹
Stride: 𝑆
Output: (𝑁−𝐹

𝑆
+ 1) × (

𝑁−𝐹

𝑆
+ 1)

Input width of N

𝑁 = 7, 𝐹 = 3, 𝑆 = 1:
7−3

1
+ 1 = 5

𝑁 = 7, 𝐹 = 3, 𝑆 = 2:
7−3

2
+ 1 = 3

𝑁 = 7, 𝐹 = 3, 𝑆 = 3:
7−3

3
+ 1 = 2.3333

Fractions are illegal

Filter width of F F
ilt

er
 h

ei
g

ht
 o

f F

Convolution Layers: Dimensions

To preserve (spatial) size,
set padding to 𝑃 =

𝐹−1

2

Most common is ‘zero’ padding

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Im
ag

e
7x

7
+

ze
ro

 p
ad

d
in

g

Input: 7 × 7
Filter: 3 × 3
Padding: 1
Stride: 1
Output: 7 × 7

Output Size: (𝑁+2⋅𝑃−𝐹
𝑆

+ 1) × (
𝑁+2⋅𝑃−𝐹

𝑆
+ 1)

Convolution Layers: Dimensions

To preserve (spatial) size,
set padding to 𝑃 =

𝐹−1

2

Most common is ‘zero’ padding

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Im
ag

e
7x

7
+

ze
ro

 p
ad

d
in

g

Input: 7 × 7
Filter: 3 × 3
Padding: 1
Stride: 1
Output: 7 × 7

What is the output if we set
𝑃 = 2?

Convolution Layers: Dimensions

32

32

3

28

28

5

24

24

8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5 filters
5 × 5 × 3

8 filters
5 × 5 × 5

12 filters
5 × 5 × 8

Input Image

20

Shrinking down so quickly (32->28->24->20) is typically not a good idea…

Convolution Layers: Dimensions
Example

Input image: 32 × 32 × 3
10 filters 5 × 5
Stride 1
Pad 2 Depth of 3 is implicitly given

3

32

32

10 filters
5 × 5 × 3

Output size is:
32 + 2 ⋅ 2 − 5

1
+ 1 = 32

I.e., 32 × 32 × 10

3

Remember
Output: (𝑁+2⋅𝑃−𝐹

𝑆
+ 1) × (

𝑁+2⋅𝑃−𝐹

𝑆
+ 1)

Convolution Layers: Dimensions
Example

Input image: 32 × 32 × 3
10 filters 5 × 5
Stride 1
Pad 2

3

32

32

10 filters
5 × 5 × 3

Output size is:
32 + 2 ⋅ 2 − 5

1
+ 1 = 32

I.e., 32 × 32 × 10

Remember
Output: (𝑁+2⋅𝑃−𝐹

𝑆
+ 1) × (

𝑁+2⋅𝑃−𝐹

𝑆
+ 1)

Convolution Layers: Dimensions
Example

Input image: 32 × 32 × 3
10 filters 5 × 5
Stride 1
Pad 2

3

32

32

10 filters
5 × 5 × 3

Number of parameters (weights):
Each filter has 5 × 5 × 3 + 1 = 76 params (+1 for bias)
-> 76 ⋅ 10 = 760 params in layer

Convolution Layers: Dimensions
• Input is a volume of size 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐷𝑖𝑛
• Four hyperparameters

– Number of filters 𝐾
– Spatial filter extent 𝐹
– Stride 𝑆
– Zero padding 𝑃

• Output volume is of size 𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝐷𝑜𝑢𝑡

– 𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛−𝐹+2⋅𝑃

𝑆
+ 1

– 𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛−𝐹+2⋅𝑃

𝑆
+ 1

– 𝐷𝑜𝑢𝑡 = 𝐾

• There are 𝐹 ⋅ 𝐹 ⋅ 𝐷𝑖𝑛 weights per filter; i.e., a total of 𝐹 ⋅ 𝐹 ⋅ 𝐷𝑖𝑛 ⋅ 𝐾 weights and 𝐾 biases

• In the output volume, the 𝐷-th depth slice of size (𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡) is the result of the
convolution of the 𝐷-th over the input volume with a stride of 𝑆, and offset by its bias

Slide by Li/Karpathy/Johnson

Common settings:
𝐾 =′ powers of 2′, e. g. , 32, 64, 128, 512
𝐹 = 3, 𝑆 = 1, 𝑃 = 1
𝐹 = 5, 𝑆 = 1, 𝑃 = 2
𝐹 = 5, 𝑆 = 2, 𝑃 = (𝑤ℎ𝑎𝑡𝑒𝑣𝑒𝑟 𝑓𝑖𝑡𝑠)
𝐹 = 1, 𝑆 = 1, 𝑃 = 0

Convolution Layers: Dimensions
• 1 × 1 Convolution is actually pretty common

16

32

32

32 filters
1 × 1 × 32

32

32

32

Each filter performs a 64-dim
dot product (+bias)

Conv Layer in Torch

Input is a volume of size 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐷𝑖𝑛
Four hyperparameters

- Number of filters 𝐾
- Spatial filter extent 𝐹
- Stride 𝑆
- Zero padding 𝑃

Convolutional Neural Network

Pooling Layer

Slide by Li/Karpathy/Johnson

Pooling Layer: Max Pooling

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3

6 9

3 4

Single depth slice of input

Max pool with
2 × 2 filters and stride 2

‘Pooled’ output

Pooling Layer

• Conv Layer = ‘Feature Extraction’
– Computes a feature in a given region

• Pooling Layer = ‘Feature Selection’
– Picks the strongest activation in a region

Pooling Layer
• Input is a volume of size 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐷𝑖𝑛
• Four hyperparameters

– Spatial filter extent 𝐹
– Stride 𝑆

• Output volume is of size 𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝐷𝑜𝑢𝑡

– 𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛−𝐹

𝑆
+ 1

– 𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛−𝐹

𝑆
+ 1

– 𝐷𝑜𝑢𝑡 = 𝐷𝑖𝑛
• Does not contain parameters; e.g., its fixed function

Filter count and padding
make no sense here

Pooling Layer
• Input is a volume of size 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐷𝑖𝑛
• Four hyperparameters

– Spatial filter extent 𝐹
– Stride 𝑆

• Output volume is of size 𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝐷𝑜𝑢𝑡

– 𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛−𝐹

𝑆
+ 1

– 𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛−𝐹

𝑆
+ 1

– 𝐷𝑜𝑢𝑡 = 𝐷𝑖𝑛
• Does not contain parameters; e.g., its fixed function

Common settings:
𝐹 = 2, S = 2
𝐹 = 3, 𝑆 = 2

Convolutional Neural Network

Fully-Connected Layer (FC)
• Same as what we had in ‘ordinary’ Neural Networks

– i.e., set of hidden layers
– Brute-force connections (everything with everything)

3 fully-connected layers

Convolutions vs Fully-Connected
• In contrast to fully-connected layers, we want to

restrict the degrees of freedom
– FC is somewhat brute force
– Convolutions are structured

• Sliding window to with the same filter parameters to
extract image features
– Concept of weight sharing
– Extract same features independent of location

Convolutional Neural Network
• Turns out that CNNs are similar to the visual cortex:

[Hubel & Wiesel, 59, 62, 68, …]

Test Benchmarks
• Image Net Dataset:

ImageNet Large Scale Visual Recognition Competition (ILSVRC)

Russakovsky et al. (out of FeiFei Li’s lab)

CNN Architectures: LeNet-5
[LeCun et al. 1998]

Conv filters of 5 × 5, stride of 1
Subsampling (i.e., pooling) of 2 × 2 with stride of 2

CNN Architectures: Conv -> Pool -> Conv -> Pool -> Conv -> FC

CNN Architectures: AlexNet
[Krizhevsky et al. 2012]

Input: 227 × 227 × 3 images
Conv1 -> MaxPool1 -> Norm1 -> Conv2 -> MaxPool2 -> Norm2 ->
-> Conv3 -> Conv4 -> Conv5 -> Maxpool3 -> FC6 -> FC7 -> FC8

First use of ReLU!

CNN Architectures: AlexNet
[Krizhevsky et al. 2012]

Input: 227 × 227 × 3 images
First layer:
- 96 filters of 11 × 11 applied at stride 4
- Output: 55 × 55 × 96
- Parameters: 11 ⋅ 11 ⋅ 3 + 1 ⋅ 96 = 35𝐾

CNN Architectures: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

- First use of ReLu
- Norm layers (not used today)
- Heavy data augmentation
- Dropout 0.5
- Batch size of 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10

when accuracy plateaus
- L2 weight decay 5e-4

CNN Architectures AlexNet

7CNN Ensemble
ImageNet top 5 error: 18.2% -> 15.4%

[Krizhevsky et al. 2012]

CNN Architectures: ZFNet
[Zeiler and Fergus 2013]

Similar to AlexNet
Conv1: 11 × 11 stride of 4 changed to 7 × 7 stride of 2
Conv3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

CNN Architectures: ZFNet
[Zeiler and Fergus 2013]

Ensemble
ImageNet top 5 error: 15.4% -> 14.8%

CNN Architectures: VGGNet
[Simonyan and Zisserman 2014]

Analyze different architectures!

Best model:

Ensemble
ImageNet top 5 error: 11.2% -> 7.3%

CNN Architectures: VGGNet

Slide by Li/Karpathy/Johnson

CNN Architectures: GoogLeNet
[Szegedy et al. 2014]

22 Layers + Inception module

Ensemble
ImageNet top 5 error: 6.7%

Inception Module

CNN Architectures: GoogLeNet
[Szegedy et al. 2014]

Only 5 mio params!
No FC Layers

About 12x less param
than AlexNet; 2x
more compute
6.7% vs 16.4%

CNN Architectures: ResNet
[He et al. 2015]

CNN Architectures: ResNet
[He et al. 2015]

CNN Architectures: ResNet

- Batch norm after every Conv Layer
- Xavier/2 init by He et al.
- SGD + Momentum (0.9)
- Learning rate 0.1,

divided by 10 when plateau
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout!

CNN Architectures

Slide by Li/Karpathy/Johnson

CNN Architectures: ResNet

• What Conv Layers do spatially, ResNet and Inception
models do across layers (kind of)

[He et al. 2015]

CNN Architectures

2.99%
2016

2.25%
2017

WMW / Trimps-Souchen

CNN Architectures

http://image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf

http://image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf

History of Conv Nets
• LeNet-5 [LeCun et al. 98]
• AlexNet [Krishevsky et al. 12]
• ZFNet [Zeiler and Fergus 13]
• VGGNet [Simonyan and Zisserman 14]

• ‘Advanced’ Architectures
– GoogLeNet [Szegedy et al. 14]
– ResNet [He et al. 15]
– XceptionNet [Chollet 17]

CNN Architectures
• Summary:

– ConvNets stack Conv, Pool, FC
– Trend towards smaller filters and deeper
– Trend towards removing Pool and FC

• I.e., only conv -> ‘fully-convolutional’

– ResNet and InceptionNet architectures crush all!
• Need to fast forward gradients

Administrative Things

• Evaluation starts!

• Next Tuesday Dec 12th: More on ConvNets!

• This Thursday Dec 7th: No Tutorial (Dies Academicus)

