
Stockfish
• Stockfish is a chess engine

– won the unofficial world computer chess championships
in season 6 (2014) and season 9 (2016)

– 2016 Top Chess Engine Championship
(TCEC) world-champion

Stockfish Elo rating >> 3000; best human (Magnus Carleson 2800ish)

Stockfish
• Evaluates positions based on hand-crafted features

(e.g., by human grandmasters and carefully fine-
tuned)

• E.g., material: pawn=1, bishop=3, knight=3, rook=5,
queen=9, king=200

• Monte-Carlo tree search (MCTS) or Alpha-beta
Search
– Vast search tree
– Large number of heuristics to prune trees quickly

Stockfish

Play on lichess: https://lichess.org/

Can play for free
against it in practice!

https://lichess.org/

AlphaZero
• Replaces the handcrafted knowledge and domain-

specific augmentations used in traditional game-
playing programs with deep neural networks and a
tabula rasa reinforcement learning algorithm

• Learns from scratch by playing against itself
– No (short-term) biases like values of pieces
– Extremely position-oriented (locks pieces in etc.)

DeepMind’s AlphaZero: https://arxiv.org/pdf/1712.01815.pdf

https://arxiv.org/pdf/1712.01815.pdf

AlphaZero vs Stockfish

DeepMind’s AlphaZero: https://arxiv.org/pdf/1712.01815.pdf

Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm

https://arxiv.org/pdf/1712.01815.pdf

AlphaZero vs Stockfish

https://lichess.org/study/wxrovYNH

Games are on lichess

https://lichess.org/study/wxrovYNH

What’s Next? Video Games!

Starcraft 2 API by Deepmind

What’s Next? Video Games

Starcraft 2 API by Deepmind

Lecture 7 Recap

Convolution Layers

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1 number:
dot product between filter weights 𝑤
and 𝑥𝑖 − 𝑡ℎ chunk of the image
Here: 5 ⋅ 5 ⋅ 3 = 75-dim dot product + bias

𝑧𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏

5 × 5 × 3 5 × 5 × 3 1

Convolution Layers: Dimensions

32

32

3

28

28

5

24

24

8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5 filters
5 × 5 × 3

8 filters
5 × 5 × 5

12 filters
5 × 5 × 8

Input Image

20

Convolution Layers: Dimensions
Example

Input image: 32 × 32 × 3
10 filters 5 × 5
Stride 1
Pad 2

3

32

32

10 filters
5 × 5 × 3

Output size is:
32 + 2 ⋅ 2 − 5

1
+ 1 = 32

I.e., 32 × 32 × 10

Remember
Output: (𝑁+2⋅𝑃−𝐹

𝑆
+ 1) × (

𝑁+2⋅𝑃−𝐹

𝑆
+ 1)

Convolution Layers: Dimensions
• Input is a volume of size 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐷𝑖𝑛
• Four hyperparameters

– Number of filters 𝐾
– Spatial filter extent 𝐹
– Stride 𝑆
– Zero padding 𝑃

• Output volume is of size 𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝐷𝑜𝑢𝑡

– 𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛−𝐹+2⋅𝑃

𝑆
+ 1

– 𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛−𝐹+2⋅𝑃

𝑆
+ 1

– 𝐷𝑜𝑢𝑡 = 𝐾

• There are 𝐹 ⋅ 𝐹 ⋅ 𝐷𝑖𝑛 weights per filter; i.e., a total of 𝐹 ⋅ 𝐹 ⋅ 𝐷𝑖𝑛 ⋅ 𝐾 weights and 𝐾 biases

• In the output volume, the 𝐷-th depth slice of size (𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡) is the result of the
convolution of the 𝐷-th over the input volume with a stride of 𝑆, and offset by its bias

Slide by Li/Karpathy/Johnson

Common settings:
𝐾 =′ powers of 2′, e. g. , 32, 64, 128, 512
𝐹 = 3, 𝑆 = 1, 𝑃 = 1
𝐹 = 5, 𝑆 = 1, 𝑃 = 2
𝐹 = 5, 𝑆 = 2, 𝑃 = (𝑤ℎ𝑎𝑡𝑒𝑣𝑒𝑟 𝑓𝑖𝑡𝑠)
𝐹 = 1, 𝑆 = 1, 𝑃 = 0

Pooling Layer: Max Pooling

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3

6 9

3 4

Single depth slice of input

Max pool with
2 × 2 filters and stride 2

‘Pooled’ output

Pooling Layer
• Input is a volume of size 𝑊𝑖𝑛 × 𝐻𝑖𝑛 × 𝐷𝑖𝑛
• Four hyperparameters

– Spatial filter extent 𝐹
– Stride 𝑆

• Output volume is of size 𝑊𝑜𝑢𝑡 × 𝐻𝑜𝑢𝑡 × 𝐷𝑜𝑢𝑡

– 𝑊𝑜𝑢𝑡 =
𝑊𝑖𝑛−𝐹

𝑆
+ 1

– 𝐻𝑜𝑢𝑡 =
𝐻𝑖𝑛−𝐹

𝑆
+ 1

– 𝐷𝑜𝑢𝑡 = 𝐷𝑖𝑛
• Does not contain parameters; e.g., its fixed function

Common settings:
𝐹 = 2, S = 2
𝐹 = 3, 𝑆 = 2

Convolutional Neural Network

Convolutional Neural Network

Slide by LeCun

CNN Architectures: AlexNet
[Krizhevsky et al. 2012]

Input: 227 × 227 × 3 images
Conv1 -> MaxPool1 -> Norm1 -> Conv2 -> MaxPool2 -> Norm2 ->
-> Conv3 -> Conv4 -> Conv5 -> Maxpool3 -> FC6 -> FC7 -> FC8

First use of ReLU!

CNN Architectures: VGGNet
[Simonyan and Zisserman 2014]

Analyze different architectures!

Best model:

Ensemble
ImageNet top 5 error: 11.2% -> 7.3%

CNN Architectures: ResNet
[He et al. 2015]

CNN Architectures: ResNet
[He et al. 2015]

CNN Architectures: ResNet

- Batch norm after every Conv Layer
- Xavier/2 init by He et al.
- SGD + Momentum (0.9)
- Learning rate 0.1,

divided by 10 when plateau
- Mini-batch size 256
- Weight decay of 1e-5
- No dopout!

CNN Architectures

Slide by Li/Karpathy/Johnson

CNN Architectures: ResNet

• What Conv Layers do spatially, ResNet and Inception
models do across layers (kind of)

[He et al. 2015]

CNN Architectures

http://image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf

http://image-net.org/challenges/talks_2017/ILSVRC2017_overview.pdf

Backprop through CNN Layers

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1 number:
dot product between filter weights 𝑤
and 𝑥𝑖 − 𝑡ℎ chunk of the image
Here: 5 ⋅ 5 ⋅ 3 = 75-dim dot product + bias

𝑧𝑖 = 𝑤𝑇𝑥𝑖 + 𝑏

5 × 5 × 3 5 × 5 × 3 1

Backprop through CNN Layers

http://www.jefkine.com/general/2016/09/05/
backpropagation-in-convolutional-neural-networks/

http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Backprop through CNN Layers

𝛿11, 𝛿12, 𝛿21, 𝛿22

gradient

http://www.jefkine.com/general/2016/09/05/
backpropagation-in-convolutional-neural-networks/

http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/

Backprop through CNN Layers

Input: 16-dim vector
Output: 4-dim vector (will be re-shaped as 2 x 2 eventually)

𝐶 =

Backward pass is simply multiplying with 𝐶𝑇

[Dumoulin et al. 16]

Task for at home:
think it through on a

piece of paper 

Using Convolutional
Neural Networks

Classification on CIFAR

60k 32 x 32 RGB images
6k images per class
50k training and 10k test

[Krizhevsky 09]

Classification on CIFAR

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

[Karpathy]

State of the art on CIFAR-10 is > 90%
It has isolated objects, so it’s the ‘straight-forward’ applications of CNNs

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

How to Train in Practice?

Conv & Pooling

Conv Feature Map

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

How to Train in Practice?

Conv & Pooling

Conv Feature Map

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

E.g., AlexNet, VGG, GoogLeNet

Train on ImageNet once (10 mio images) -> 1-2 weeks

How to Train in Practice?

Conv & Pooling

Conv Feature Map

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

E.g. AlexNet, VGG, GoogLeNet

Use Pre-Trained Network (e.g., download model)
-> keep ConvLayers fixed

For different class set,
only train FCs
-> new class scores
-> less training data
-> faster training

How to Train in Practice?

Conv & Pooling

Conv Feature Map

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

Always think about these strategies!
- Try to start with existing, pre-trained models
- In the assignments, don’t try to train ImageNet model from scratch

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

CIFAR 10 +
“raw” CNN 

CIFAR 10 +
“raw” CNN 

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Using CNNs in Computer Vision
• Classification:

– Input: image
– Output: class label
– Loss of class accuracy

• Localization:
– Input: image
– Output: box in image (x, y, w, h)
– Loss over IoU (intersection over union)

• Classification + Localization: combine both

class = cat

(x, y, w, h)

Localization as Regression

CNN

Input: input

(single object)

Output:
Box coordinates

(x, y, w, h)

Ground Truth (from annotation):
Box coordinates

(x’, y’, w’, h’)

Loss:
L2 distance

𝑥 − 𝑥′ 2 + 𝑦 − 𝑦′ 2 + 𝑤 −𝑤′ 2 + ℎ − ℎ′ 2

Classification + Localization: Regression

Conv & Pooling

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

F
C

F
C

Box coordinates

Loss
(e.g., L2)

Multiple “Heads”; here:
- Classification head
- Localization head

Classification + Localization: Regression

1) Train only classification model (only use class loss)
2) Train regression head only (L2 loss on box coords)
3) At test time use both heads

Classification + Localization: Regression

Conv & Pooling

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

F
C

F
C

Box coordinates Class 0

Loss
(e.g., L2)

⋮

F
C

F
C

Box coordinates Class C

Loss
(e.g., L2)

class agnostic vs class specific

Classification head
C classes

Class specific
localization heads

C x 4 numbers
(one per box)

Classification + Localization: Regression

• Where to attach the regression head?

Conv & Pooling F
C

F
C

Class Scores

Loss
(e.g., Softmax)

Conv Features

After conv: Overfeat, VGG

After FCs: DeepPose, R-CNN

Classification + Localization: Regression

“Hack” for localization multiple, but fixed number of objects

Exactly K objects
e.g., cat, cat head, cat ears, eyes, etc…

K x 4 numbers

Classification + Localization: Regression

• Human Pose Estimation
– Person has K joints (similar to Kinect SDK)
– Regress (x, y) for each joint from last FC of AlexNet
– Post Refinment, use Normalized Device Coords

[Toshev and Szegedy: “DeepPose” 14]

Classification + Localization: Regression

• Adding regression is very simple and efficient!

• Think about smart architecture design

• Can combine different Conv parts and “Heads”

Classification + Localization: Sliding Window

1. Train classification network on specific object(s)

2. Select random bounding box: check class score

3. Brute force testing: everywhere at every scale

4. Take location with highest class score

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2
Box location 2 -> score 0.42

Classification + Localization: Sliding Window

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2
Box location 2 -> score 0.42
Box location 3 -> score 0.31

Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2
Box location 2 -> score 0.42
Box location 3 -> score 0.31
Box location 4 -> score 0.8

Take winning box location as result

Classification + Localization: Sliding Window

• Problem:
– Slow testing, needs a lot of tests to find a good one.
– Need to get *really* lucky to find the *exact* box
– Harder to train, since classifier does not know about loc

• Idea:
– Combine with regressor for refinenment
– Train both

Classification + Localization: Sliding Window

Sliding Window: Overfeat

Conv & Pooling

F
C

F
C

Class Scores: 1000

Loss
(e.g., Softmax)

F
C

F
C

Boxes: 1000 x 4

Loss
(e.g., L2)

[Sarmenet et al.: Overfeat, 14]

But same idea: try different locations at test
-> classify + regress for refinement

4096

4096
1024

4096

Sliding Window: Overfeat

[Sarmenet et al.: Overfeat, 14]

1) Window positions + score maps

2) Box regression

3) Final bounding box
prediction

Sliding Window: Overfeat

Conv & Pooling

F
C

F
C

Class Scores: 1000

Loss
(e.g., Softmax)

F
C

F
C

Boxes: 1000 x 4

Loss
(e.g., L2)

[Sarmenet et al.: Overfeat, 14]

4096

4096
1024

4096

Sliding Window: Overfeat
Efficient sliding by converting FCs into convs

Conv & Pooling

Class Scores: 1000

Boxes: 1000 x 4

[Sarmenet et al.: Overfeat, 14]

4096 x 1 x 1

5 x 5
conv

1024 x 1 x 1

1 x 1
conv

1 x 1
conv

4096 x 1 x 1

5 x 5
conv

1024 x 1 x 1

1 x 1
conv

1 x 1
conv

Sliding Window: Overfeat
Convs are great in terms of compute (weight sharing!)

[Sarmenet et al.: Overfeat, 14]

But what’s the other
main advantage?

Sliding Window: Overfeat
Architecture is (somewhat) invariant to the image size

[Sarmenet et al.: Overfeat, 14]

Training: 14x14 image
1 x 1 classifier output

Testing: 2x2 image
2 x 2 classifier output

It needs to handle different box sizes!

ImageNet Classification + Localization

ILSVRC localization challenge

Credit: Li/Karpathy/Johnson

Overfeat: Multiscale conv
regression with box merging

VGG: Mostly the same, but
better network (also fewer
scales and location, gain by
better features)

ResNet: Crazy network, and
different localization method
(region proposals, RPN)

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

CIFAR 10 +
“raw” CNN 

Regression and/or
sliding window

CIFAR 10 +
“raw” CNN 

Regression and/or
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Multiple objects!
(but we don’t know how many)

Object Detection as Regression?

Location (x, y, w, h) for car
Location (x, y, w, h) for motor bike

Regress 8 numbers
(distributed over 1 more multiple heads)

Object Detection as Regression?
Location (x, y, w, h) for cat 1
Location (x, y, w, h) for cat 2
Location (x, y, w, h) for cat 3
Location (x, y, w, h) for cat 4

Regress 16 numbers
(distributed over 1 more multiple heads)

Object Detection as Regression?

What now?
It is actually possible via regression (using RNNs -> more later)

Object Detection as Classification

2 classes

Dog: no

Cat: no

Object Detection as Classification

2 classes

Dog: maybe

Cat: no

Object Detection as Classification

2 classes

Dog: yes

Cat: no

Object Detection as Classification

2 classes

Dog: maybe

Cat: maybe

Object Detection as Classification

2 classes

Dog: no

Cat: yes

Classification as Detection
• Problem: need to test at every position and scale

• Solutions
– Just do it  but it takes time at test
– Smarter, but fewer, proposals

• E.g., in videos you can use results from prev. frames
• Train region proposals!

Region Proposals
Main Idea:

- Running a CNN at every possible location is too costly

- Use a cheap proposal method

- Run ‘expensive’ CNN only at selected regions

Region Proposals

Credit: Li/Karpathy/Johnson

Region Proposals: Selective Search

[Uijlings et al. 13, Selective Search for Object Recognition]

Convert regions
to boxes

Bottom-up segmentation, merging at multiple scales

Region Proposals: Lots of Options

[Hosang et al. 15, Overview of object proposals]

Most of them are not based on DL. Why ?

Putting it Together: R-CNN

1) Run region proposal
(e.g., selective search)

2) Warp (i.e., re-scale,
re-size) to a fixed
image size

3) This fixed output
is fit into a CNN
with class + regression
head, which corrects
for slightly off
proposals

Putting it Together: R-CNN

[Wang et al. 13, “Regionlets for Generic Object Detection”]

A detection is a true positive if
it has IoU with a ground-truth
box greater than some
threshold (usually 0.5)
(mAP@0.5)

mAP is a number from 0 to
100; high is good

R-CNN: Training
• Unfortunately, training is fairly complex

– Series of pre-training and fine-tuning tasks for
classification, detection, etc.

– Extraction of intermediate features that are cached that
are pretty big for SVM classification (also space issue)

– SVMs are not jointly trained with CNN
– It’s also extremely slow to train

[Girshick 14, R-CNN]

Fast R-CNN (testing)

[Girshick 15, Fast R-CNN]

Solves test-time issue
due to independent
CNN forward passes

-> now one pass that
shares computation of
conv layers between
proposals with in an
image

Fast R-CNN (training)

[Girshick 15, Fast R-CNN]

Solves training time
issue: 1) CNN not
updated with SVM
losses. 2) Complex
training pipeline

-> Just train whole
thing end-to-end

Fast R-CNN Results

Using VGG-16 CNN on Pascal VOC 2007 dataset

Credit: Li/Karpathy/Johnson

Fast R-CNN
• Issue: Test-time speeds don’t include object proposals

Credit: Li/Karpathy/Johnson

Faster R-CNN

Solution: make the CNN also
do region proposals!

Insert a Region Proposal Network (RPN)
after last conv layer

RPN produces region proposals (one shot)
-> no need for external proposals

After RPN, region of interest pooling, and
use similar classifier and bbox regressor
like Fast R-CNN

[Girshick 15, Faster R-CNN]

Faster R-CNN

Credit: Li/Karpathy/Johnson

ImageNet Detection 2013 - 2015

Credit: Li/Karpathy/Johnson

CIFAR 10 +
“raw” CNN 

Regression and/or
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Selective Search, RP
(Fast(er)) R-CNN

Selective Search, RP
(Fast(er)) R-CNN

CIFAR 10 +
“raw” CNN 

Regression and/or
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Next Lecture 

Using CNNs in Computer Vision
• We have CNNs (Convs, Pooling, FCs, Losses)
• We can employ them for classification
• We can employ them for regression

• Somewhat oversimplified: the “rest” is smart
architectures and application of these tools
– > of course it’s more complicated 

Important Datasets to Know
CIFAR-10: single object, centered, Krizhevsky et al.
MNIST: handwritten digits, LeCun et al.
Pascal VOC, 20 classes, 10k images, Everingham et al.
ImageNet: 10 mio images, Deng et al.
MSCoco, 300k images, Lin et al. 15

Administrative Things
• Thursday Dec. 14th: More about CNN Architectures –

lots of cool stuff: e.g., Dense Pixel Classification!

• Tomorrow: Project proposals introduction!
– Solutions on 3rd exercise
– Example proposals
– Guidelines: how much is doable?

• Dating pool: Finalize forming teams (e.g., on Moodle!)

