
Final Projects



Final Projects - Dates

• Project Proposals:

– Project proposal due date: December 20th 11.59 
p.m.

– Project proposal feedback date: December 21th 

11.59 p.m.

– Starting date: December 22th

• Poster presentation and due date: February 6th

Projects	with	no	proposal	won’t	be	
graded!





Final Project – Project Proposals

• Send your project proposals to this email address:          
dl4cv-dropbox.vision.in@tum.de

• Remember to add all members of the team in the CC 
as well as your team ID

• Deadline: December 20th 11.59 p.m.!



Lecture 8 Recap



Using CNNs in Computer Vision

• We have CNNs (Convs, Pooling, FCs,  Losses)
• We can employ them for classification
• We can employ them for regression

• Somewhat oversimplified: the “rest” is smart 
architectures and application of these tools
– > of course it’s more complicated J



CNN Architectures



How to Train in Practice?

Conv & Pooling

Conv Feature Map

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

E.g. AlexNet, VGG, GoogLeNet

Use Pre-Trained Network (e.g., download model)
-> keep ConvLayers fixed

For different class set,
only train FCs
-> new class scores
-> less training data
-> faster training



Don’t be afraid to use newer 
architectures!

(credit: Justin Johnson, jcjohnson on	github)

“Poor” mans choice:
- Resnet 50

Better performance:
- Inception-V3
- Xception



Convolutional Neural Network

Slide by LeCun



How to finetune convolutional 
layers?

– Take network pretrained on big dataset (ImageNet)
– Reinitialize fully connected layer(s)
– Train a new fully connected network for a few epochs 

with fixed convolutional layers (or choose low(er) learning rate)

– Set a subset of convolutional layers to trainable and train 
until convergence on validation set

F
C

Class Scores

Loss
(e.g., Softmax)Conv & Pooling



Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson



Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

CIFAR 10 + 
“raw” CNN J



Important Datasets to Know
CIFAR-10: single object, centered, Krizhevsky et al.
MNIST: handwritten digits, LeCun et al.
Pascal VOC, 20 classes, 10k images, Everingham et al. 
ImageNet: 10 mio images, Deng et al.
MSCoco, 300k images, Lin et al. 15



Classification + Localization: Regression

Conv & Pooling

F
C

F
C

Class Scores

Loss
(e.g., Softmax)

F
C

F
C

Box coordinates

Loss
(e.g., L2)

Multiple “Heads”; here:
- Classification head
- Localization head



Class score (cat):
Box location 0 -> score 0.02
Box location 1 -> score 0.2
Box location 2 -> score 0.42
Box location 3 -> score 0.31
Box location 4 -> score 0.8

Take winning box location as result

Classification + Localization: Sliding Window



ImageNet Classification + 
Localization

ILSVRC localization challenge

Credit: Li/Karpathy/Johnson

Overfeat: Multiscale conv
regression with box merging

VGG: Mostly the same, but 
better network (also fewer
scales and location, gain by
better features)

ResNet: Crazy network, and
different localization method
(region proposals, RPN)



CIFAR 10 + 
“raw” CNN J

Regression and/or 
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Multiple objects!
(but we don’t know how many)



Region Proposals

Credit: Li/Karpathy/Johnson



Putting it Together: R-CNN

1) Run region proposal 
(e.g., selective search)

2) Warp (i.e., re-scale,
re-size) to a fixed 
image size

3) This fixed output
is fit into a CNN
with class + regression
head, which corrects
for slightly off 
proposals



Fast R-CNN (training)

[Girshick 15, Fast R-CNN]

Solves training time 
issue: 1) CNN not 
updated with SVM 
losses. 2) Complex 
training pipeline

-> Just train whole 
thing end-to-end



Faster R-CNN

Solution: make the CNN also
do region proposals!

Insert a Region Proposal Network (RPN)
after last conv layer

RPN produces region proposals (one shot)
-> no need for external proposals

After RPN, region of interest pooling, and
use similar classifier and bbox regressor
like Fast R-CNN

[Girshick 15, Faster R-CNN]



ImageNet Detection 2013 - 2015

Credit: Li/Karpathy/Johnson



Detection without Proposals: 
Yolo/SSD

Credit: Li, Johnson, Yeung



Credit: Li, Johnson, Yeung



Lecture 9



Image Segmentation 
and Instance 

Segmentation



CIFAR 10 + 
“raw” CNN J

Regression and/or 
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson

Selective Search, (D)RP
(Fast(er)) R-CNN 



Selective Search, RP
(Fast(er)) R-CNN 

CIFAR 10 + 
“raw” CNN J

Regression and/or 
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson



Semantic Segmentation

Predict class label for every pixel
(i.e., dense pixel labeling)

No differentiation between 
instances

I.e., all objects of the same class
receive same class label

Traditional computer vision task

[Shotton et al. 07] TextonBoost



Instance Segmentation

Detect instances, classify category, 
label pixels of each instance;

Distinguish between instances within
a category; 
e.g., elephant1, elephant2, etc.

Simultaneous detection and 
segmentation (SDS)

MS COCO is core dataset
-> lots of work around it

[Dai et al. 15] Instance-aware Semantic Segmentation



Training Data

• Have a number of fixed classes
• We must label every pixel in our training set!
• Very expensive!
• Usual way of handling this: crowdsourcing



Semantic Segmentation (Patch-
based)

Extract patch

CNN

Feed into CNN Classify center pixel

“Cow”



Semantic Segmentation (Patch-
based)

CNN

Feed into CNN Classify center pixel

Run CNN for every pixel!

Extract patch



Semantic Segmentation (Patch-
based)

CNN

Feed into CNN Classify center pixel

Run CNN for every pixel!

Extract patch



Semantic Segmentation (Patch-
based)

CNN

Feed into CNN Classify center pixel

Run CNN for every pixel!

Extract patch



Semantic Segmentation (Patch-
based)

Extract patch

CNN

Feed into CNN Classify center pixel

“Cow”

Run CNN for every pixel!

Possibly run a CRF at the end



Semantic Segmentation (Patch-
based)

• Extract patch from image for every pixel
• Run every patch independently through a CNN

• Easy architecture: just classify -- use VGG/ResNet
• Easy to train: just use pixel center label for patch
• Expensive at test time



Semantic Segmentation 
(Fully Convolutional)

pixels in
width x height x RGB

pixels out
width x height x classes

co
nv

co
nv

co
nv

co
nv

Just convs & activations

Fully Convolutional Network
Super expensive!



Semantic Segmentation (FC)

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015 

Credit: Li, Johnson, Yeung

Pooling, strided
convolutions

???



Unpooling

1 2
3 4

1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

1 2
3 4

1 0 2 0
0 0 0 0
3 0 4 0
0 0 0 0

Nearest Neighbor “Bed of Nails”

2x2 4x4 2x2 4x4



Max Unpooling

6 8
7 6

1 2 7 8
5 6 3 4
8 4 1 2
7 3 6 5

1 2
3 4

0 0 0 2
0 1 0 0
0 0 0 0
3 0 4 0

Max Pooling Max Unpooling

2x24x4 2x2 4x4



Unpooling in Action

[Noh et al. 15] Learning Deconvolution Network for Semantic Segmentation

VGG Transposed VGG



Recall: 3x3 Convolution, Stride 1, Pad 1

4x4 4x4



Recall: 3x3 Convolution, Stride 1, Pad 1

4x4 4x4



Recall: 3x3 Convolution, Stride 2, Pad 1

4x4 2x2



Recall: 3x3 Convolution, Stride 2, Pad 1

4x4 2x2



3x3 Transpose Convolution, Stride 2, Pad 
1

2x2 4x4



3x3 Transpose Convolution, Stride 2, Pad 
1

2x2 4x4



3x3 Transpose Convolution, Stride 2, Pad 
1

2x2 4x4
Sum where output overlaps



Example in 1D, stride 2

a
b

x
y
z

ax
ay

az+bx
by
bz

*



Convolution
no padding, no stride

https://github.com/vdumoulin/conv_arithmetic

Transposed convolution
no padding, no stride

Transpose Convolution, Stride 1



Transpose Convolution, Stride 2

Convolution
padding, stride

https://github.com/vdumoulin/conv_arithmetic

Transposed convolution
padding, stride



Convolution as Matrix Multiplication



Convolution as Matrix Multiplication

No longer a convolution if stride > 1



Transpose Convolution
• Input gives weight for filter
• Stride gives ratio between movement in output and 

input
• Replace backward and forward pass of convolutional 

layer
• Avoid “checkerboard” patterns by using a even 

number as convolutional kernel size (e.g. k=4, s=2 
instead of k=3, s=2)

• Alternate names:
– Deconvolution
– Upconvolution
– Fractionally strided convolution

How to trigger mathematicians…



Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Conv /pool part + transpose convolution



“tabby	
cat”

Classification Network

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)



FCN: Becoming Fully Convolutional

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

Convert fully connected layers to convolutional layers!



98 1007x7x2

7x7 convolution

1007x7x2

Flatten FC

with k=100, p=0, s=1

Example: 
Convert FC 

to Conv



FCN: Becoming Fully Convolutional

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)



FCN: Upsampling Output

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)



FCN: End-to-end, Pixels-to-pixels Network

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)

x 3 x C



Short Aside: 1x1 Convolutions?

We have multiple
layers and
convolutions go
through all layers

Credit: Aaditya Prakash



Short Aside: 1x1 Convolutions



Semantic Segmentation (FCN)

• Run “fully convolutional” network (FCN)

• Take all pixels at once as input

• Bottle neck + learnable upsampling

• Predict class for every pixel simultaneously

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)



Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Conv /pool part + transpose convolution



Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)



Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)



FCN: Architecture

[Long et al. 15] Fully Convolutional Networks for Semantic Segmentation (FCN)



Semantic Segmentation (FCN)

[Long et al. 15] Fully Convolutional Networks for Semantic Segmetnation (FCN)

Skip connections -> better results



Instance Segmentation

Detect instances, classify category, 
label pixels of each instance;

Distinguish between instances within
a category; 
e.g., elephant1, elephant2, etc.

Simultaneous detection and 
segmentation (SDS)

MS COCO is core dataset
-> lots of work around it

[Dai et al. 15] Instance-aware Semantic Segmentation



Selective Search, RP
(Fast(er)) R-CNN 

CIFAR 10 + 
“raw” CNN J

Regression and/or 
sliding window

Using CNNs in Computer Vision

Credit: Li/Karpathy/Johnson



Putting it all together: Mask R-CNN

Credit: Li, Johnson, Yeung



He et al. “Mask R-CNN”



We can also add Pose!

Credit: Li, Johnson, Yeung



He et al. “Mask R-CNN”



Segmentation Overview
• Semantic segmentation

– Classify all pixels

– Fully convolutional models, downsample, then upsample
– Learnable upsampling (transpose convs)
– Skip connection can help (more later)

• Instance segmentation
– Combine object localization with

semantic segmentation

(d)	Instance	segmentation



Unsupervised 
Learning: 

Autoencoders



Training Classifiers vs Autoencoders
• Supervised Learning

– Data (x, y)
x is data, y is label

– Goal: learn mapping x -> y

– Examples: classification, 
regression

• Unsupervised Learning
– Data (x)

only data, no labels
– Goal: learn structure (e.g., 

clustering)

– Example: K-Means clustering, 
PCA, Autoencoder, density 
estimation

Super exciting! J
(“holy grail”)



Reconstruction: Autoencoder

Conv Transpose Conv

Input Image Output Image

Reconstruction
Loss (like L1, L2)



Training Autoencoders

Latent space z
dim (z) < dim (x)

In
p

u
t x

R
ec

o
ns

tr
u

ct
io

n 
x’

Input images

Reconstructed images



Testing Autoencoders

Latent space z
dim (z) < dim (x)

“Test time”:
-> reconstruction from 

‘random’ vector

R
ec

o
ns

tr
u

ct
io

n 
x’

Reconstructed images

Typically pretty blurry… why?



Autoencoder vs PCA

Principal Component Analysis
(low rank approximation)

What is the 
connection between 

Autoencoder and 
PCA?



Autoencoder: Use Cases

• Clustering
• Feature learning
• Embeddings

Pre-train AE -> fine-tune with small labeled data
figure by Li/Karpathy/Johnson



Autoencoder: Use Cases

Embedding of 
MNIST numbers



Autoencoder: Use Cases

3D shape 
embedding



Outlook: Lecture 10



Outlook Thursday 12.01.18

• Generative models
– Given training data, generate new samples from same 

distribution 

– Usually start from a random vector



Why Generative Models?

• Realistic samples for artwork, super-resolution, 
colorization, etc. 

• Generative models of time-series data can be used 
for simulation and planning (reinforcement learning 
applications!) 

• Training generative models can also enable inference 
of latent representations that can be useful as 
general features 



Basicall we do 
cool stuff like 

this…

Credit: Nvidia (Progressive Growing of GANs), Yijun Li (Universal Style Transform), Alec Radford (DcGAN


