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Overview
Part I: Background
● Deep Autoregressive Networks

○ Generating sequential data (WaveNet)
○ Generating spatially-structured data (PixelCNN, ScanNet)

● Generative Adversarial Networks
○ Generating high-resolution images (Progressive GAN)

Part II: Frontiers
● Learning from limited data
● Predicting far into the future
● Generative models for Agents
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Part I: Background
Autoregressive Models



Generative models - Research Landscape

● Latent variable models (VAE, DRAW)
● Implicit (GAN, GMMN, Progressive GAN)
● Transform (NICE, IAF, Real NVP)
● Autoregressive (NADE, MADE, RIDE, PixelCNN, WaveNet)

UAI 2017 Tutorial on Deep Generative Models.
NIPS 2016 Tutorial on Generative Adversarial Networks

Slide credit: Aaron van den OordBackground: Autoregressive Models

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1502.04623
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://proceedings.mlr.press/v37/li15.pdf
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1605.08803
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
http://proceedings.mlr.press/v37/germain15.pdf
http://papers.nips.cc/paper/5637-generative-image-modeling-using-spatial-lstms
http://papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders
https://arxiv.org/abs/1609.03499
https://danilorezendedotcom.files.wordpress.com/2017/09/deepgenmodelstutorial.pdf
https://www.youtube.com/watch?v=AJVyzd0rqdc
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Autoregressive Models

● Each factor can be parametrized by     , which can be shared.

● The variables can be arbitrarily ordered and grouped, as long as 
the ordering and grouping is consistent.

Background: Autoregressive Models



Modeling Audio

Slide credit: Aaron van den OordBackground: Autoregressive Models



Causal Convolution

Input

Hidden
Layer

Hidden
Layer

Hidden
Layer

Output

Slide credit: Aaron van den Oord7Background: Autoregressive Models
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Slide credit: Aaron van den Oord8Background: Autoregressive Models



Multiple Stacks

Slide credit: Aaron van den OordBackground: Autoregressive Models



Cross entropy loss

10

Given preceding observations         , the network computes logits    . We can 
compute the softmax over possible quantized values for sampling:

The objective is to minimize the negative log-likelihood:

Convenient function in TF: tf.nn.softmax_cross_entropy_with_logits.

Background: Autoregressive Models



Sampling - Sequential, O(N) for N samples

Slide credit: Aaron van den OordBackground: Autoregressive Models



Distillation: from O(N) to O(1) sampling

12
1. Oord, Aaron van den, et al. "Parallel WaveNet: Fast High-Fidelity Speech Synthesis."

Background: Autoregressive Models



Distillation: from O(N) to O(1) sampling

13Background: Autoregressive Models
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Modeling Text

Slide credit: Nal Kalchbrenner

The cat sat on the mat  (word-level)

T h e   c a t   s a t   o n   t h e   m a t (character-level)

The   cat   s a t   on   the   m a t (mixed)

(byte level)

(bit level)

Shorter sequences and 
dependencies, 
semantically meaningful 
units, many UNK

Long sequences and 
dependencies, 
semantically not 
meaningful units, no UNK

Background: Autoregressive Models



- The architecture is parallelizable 
along the time dimension (during 
training or scoring)

- Easy access to many states from 
the past

Slide credit: Nal Kalchbrenner

Recurrent versus Causal Convolutional Nets

Background: Autoregressive Models
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- The architecture is parallelizable 
along the time dimension (during 
training or scoring)

- Easy access to many states from 
the past

Recurrent versus Causal Convolutional Nets

Slide credit: Nal KalchbrennerBackground: Autoregressive Models



Trends: Autoregressive Models Slide credit: Nal Kalchbrenner

NMT with dilated causal convolutions

Background: Autoregressive Models



Stacking preserves resolution 
compared to seq2seq LSTM
Dynamic unfolding enables 
variable length outputs
Linear time computation

NMT with dilated causal convolutions

Slide credit: Nal KalchbrennerBackground: Autoregressive Models



Convolutional MT models with attention

1. Gehring, Jonas, et al. "Convolutional Sequence to Sequence Learning." In ICML, 2017.

23Background: Autoregressive Models



Attention-only (!) autoregressive models

The Transformer 
● Not Recurrent
● Not Convolutional
● Dot-product attention over inputs is 

masked  to preserve causal structure.

1. Vaswani, Ashish, et al. "Attention is all you need”. 
In NIPS, 2017

24Background: Autoregressive Models
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Convolution Self-Attention

Self-Attention

Att is all you need,
Vaswani, et al, 2017 

Background: Autoregressive Models
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Self-Attention

Convolution Self-Attention

Att is all you need,
Vaswani, et al, 2017 

Background: Autoregressive Models
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Modeling Images

Group-by-group
Reed et al. “Parallel Multiscale 
Autoregressive Density Estimation.”

Pixel-by-pixel
https://giphy.com/gifs/televsion-13epOe3Z06gHba

Background: Autoregressive Models



Modeling Images pixel-by-pixel

xi

Each factor can be modeled by a 
shared network (e.g. PixelCNN).

28Background: Autoregressive Models



Causal Convolutions

Spatially Colors

Background: Autoregressive Models



Pixel receptive field  after 1 causal layer

Background: Autoregressive Models



… after N layers

Background: Autoregressive Models



Modeling images group-by-group
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All pixels 
in group g

All pixels in all 
preceding groups

● Group structure encodes conditional independence assumptions.
● If G << N, sampling is cheaper than in pixel-by-pixel.

Background: Autoregressive Models
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Parallel Autoregressive models in 2D

● Went from O(N) factors to O(1)...
● Wait! Where did these group 1 pixels 

come from?
● If we have enough context to model them 

as independent, generate in parallel. 
● Otherwise, recurse.

Background: Autoregressive Models
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Parallel Autoregressive models in 2D

● In total then, there will be O(log N) factors. 
Background: Autoregressive Models
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Parallel Autoregressive models in 3D

1. Angela Dai et al. “ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans”.

Background: Autoregressive Models
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Application: Learning to Complete 3D Scans
Virtually scan synthetic data

Scenes from SUNCG [Song et al. 17]

1. Angela Dai et al. “ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans”.

Background: Autoregressive Models



Scenes from SUNCG [Song et al. 2017]

Input Completion

Application: Learning to Complete 3D Scans

Ground Truth

1. Angela Dai et al. “ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans”.
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Background: Autoregressive Models



Input Completion Ground Truth

Scans from SUNCG [Song et al. 2017]

Application: Learning to Complete 3D Scans
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Background: Autoregressive Models



Part I: Background
Generative Adversarial Networks
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Recent breakthrough: Progressive Training

1. Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." ICLR, 
2018.
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Trends and Frontiers in Deep Generative Models 
— Scott ReedFrontiers: Learning from limited data

Let s be a small 
training set.At each pixel t, attend to s 

using latest context.

Learning from Limited Data - Attention PixelCNN

1. Reed, Scott, et al. "Few-shot Autoregressive Density Estimation: Towards Learning to Learn 
Distributions." ICLR, 2018.
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Learning from Limited Data - Attention PixelCNN

Frontiers: Learning from limited data



Part II: Frontiers
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The Problem: Cascading Errors

Using Convolutional LSTM
No within-frame dependencies

1. Kalchbrenner, Nal, et al. "Video Pixel Networks." ICML, 2017.

Frontiers: Predicting far into the future
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Solution #1: Train a really good model.
Take into account within-frame dependencies.
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Bouncing MNIST

Using Convolutional LSTM
No within-frame dependencies

Using a very well-trained
Autoregressive model

1. Kalchbrenner, Nal, et al. "Video Pixel Networks." ICML, 2017.

Frontiers: Predicting far into the future
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Robot pushing dataset

Using Convolutional LSTM
No within-frame dependencies

Using a very well-trained
Autoregressive model

1. Kalchbrenner, Nal, et al. "Video Pixel Networks." ICML, 2017.

Frontiers: Predicting far into the future
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… But, eventually it blows up too, sometime 
after 20 frames.

Frontiers: Predicting far into the future
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Solution #2: Model global structure using VAE

1. Babaeizadeh, Mohammad, et al. "Stochastic Variational Video Prediction." ICLR, 2018

Frontiers: Predicting far into the future
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1. Villegas, Ruben, et al. "Learning to Generate Long-term Future via Hierarchical Prediction." ICML,  2017.

Solution #3: Generate video hierarchically

Frontiers: Predicting far into the future
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Exploration: Montezuma’s Revenge

1. Bellemare, Marc, et al. "Unifying count-based exploration and intrinsic motivation." NIPS, 2016.

Frontiers: Generative Models for Agents

http://www.youtube.com/watch?v=0yI2wJ6F8r0
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Using density models to improve exploration

1. Ostrovski, Georg, et al. "Count-Based Exploration with Neural Density Models." ICML,  2017.

Frontiers: Generative Models for Agents

Log-likelihood 
after seeing x.

Log-likelihood 
before seeing x.

Prediction Gain (PG) at time step n:
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Pseudo-Counts
Desired property: a single observation of x should lead to a unit increase in 
pseudo-count:

With some algebra, we can define Nn(x) only using the density model:

1. Ostrovski, Georg, et al. "Count-Based Exploration with Neural Density Models." ICML,  2017.
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Nn(x) can be estimated using the prediction gain:

Use Nn(x) to provide dense rewards as a “reward bonus”.

Reward bonus

1. Ostrovski, Georg, et al. "Count-Based Exploration with Neural Density Models." ICML,  2017.
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Results

Hard 
exploration

Easier 
exploration
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Using generative models for planning in Sokoban

Frontiers: Generative Models for Agents

1. Racanière, Sébastien, et al. "Imagination-Augmented Agents for Deep Reinforcement Learning." NIPS. 2017.

http://www.youtube.com/watch?v=llwAwE7ItdM
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1. Racanière, Sébastien, et al. "Imagination-Augmented Agents for Deep Reinforcement Learning." NIPS. 2017.

Using generative models for planning in Sokoban
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Learning curves
Model-free baselines



Bridging the simulation to reality gap

65
1. Bousmalis et al. “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”.

Frontiers: Generative Models for Agents



GraspGAN
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1. Bousmalis et al. “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”.

Preserve 
relevant 
content

Look 
realistic

Frontiers: Generative Models for Agents
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Conclusions
● Deep generative models are already ubiquitous in 

consumer applications, using autoregressive models:
○ Android text-to-speech
○ Neural machine translation

● Generating high-res natural images is starting to work, in 
narrow domains (e.g. faces).

● Generative models begin to be useful for agents on 
simple tasks (Atari, grasping).



Thank You!



Questions?


