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Overview
Part I: Background

e Deep Autoregressive Networks
o Generating sequential data (WaveNet)
o Generating spatially-structured data (PixelCNN, ScanNet)

e Generative Adversarial Networks
o Generating high-resolution images (Progressive GAN)

Part |l; Frontiers

e Learning from limited data
e Predicting far into the future
e Generative models for Agents



Part I: Background

Autoregressive Models



Generative models - Research Landscape

Latent variable models (VAE, DRAW)

Implicit (GAN, GMMN, Progressive GAN)

Transform (NICE, IAF, Real NVP)

Autoregressive (NADE, MADE, RIDE, PixelCNN, WaveNet)

UAI 2017 Tutorial on Deep Generative Models.
NIPS 2016 Tutorial on Generative Adversarial Networks

Background: Autoregressive Models Slide credit: Aaron van den Oord


https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1502.04623
http://papers.nips.cc/paper/5423-generative-adversarial-nets
http://proceedings.mlr.press/v37/li15.pdf
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1605.08803
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
http://proceedings.mlr.press/v37/germain15.pdf
http://papers.nips.cc/paper/5637-generative-image-modeling-using-spatial-lstms
http://papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders
https://arxiv.org/abs/1609.03499
https://danilorezendedotcom.files.wordpress.com/2017/09/deepgenmodelstutorial.pdf
https://www.youtube.com/watch?v=AJVyzd0rqdc

Autoregressive Models

N
P(z;0) = | | P(zalz<n; 0)
n=1

e Each factor can be parametrized by 9 which can be shared.

e The variables can be arbitrarily ordered and grouped, as long as
the ordering and grouping is consistent.

Background: Autoregressive Models



Modeling Audio
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Background: Autoregressive Models Slide credit: Aaron van den Oord



Causal Convolution
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Background: Autoregressive Models Slide credit: Aaron van den Ockd




Causal Dilated Convolution
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Background: Autoregressive Models Slide credit: Aaron van den 0c8d



Multiple Stacks
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Background: Autoregressive Models Slide credit: Aaron van den Oord



Cross entropy loss

Given preceding observations x . the network computes logits y. We can
compute the softmax over possible quantized values for sampling:

P(z; = nlxeg; 0) = eV /T2 eV

n!_

The objective is to minimize the negative log-likelihood:

L(z;0) = —log P(xi|r<;0)

Convenient function in TF: tf.nn.softmax_cross_entropy_with_logits.

Background: Autoregressive Models 10



Sampling - Sequential, O(N) for N samples
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Background: Autoregressive Models Slide credit: Aaron van den Oord



Distillation: from O(N) to O(1) sampling
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1. Oord, Aaron van den, et al. "Parallel WaveNet: Fast High-Fidelity Speech Synthesis."
Background: Autoregressive Models 12
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Distillation: from O(N) to O(1) sampling

Background: Autoregressive Models

13



Mean Opinion Scores

US English Voice | US English Voice Il US English 3rd Party Voice Japanese Voice

Mean Opinion Score

Trained on 28 Hours
of Recorded Speech

Trained on 8 Hours
of Recorded Speech

Trained on 21 Hours
of Recorded Speech

Trained on 65 Hours
of Recorded Speech

T I T 1T T I T
Current Best WaveNet Current Best WaveNet Current Best WaveNet Current Best WaveNet
Non-WaveNet Non-WaveNet MNon-WaveNet Non-WaveNet

Background: Autoregressive Models 14



Modeling Text

The cat sat on the mat
The cat_sat_ on_the mat

The cat _sat_on _the mat

Background: Autoregressive Models

(word-level)

Shorter sequences and
dependencies,
semantically meaningful
units, many UNK

Long sequences and

(character-level) dependencies,

(mixed)
(byte level)

(bit level)

semantically not
meaningful units, no UNK

Slide credit: Nal Kalchbrenner



Recurrent versus Causal Convolutional Nets

Deep RNN

HHT

- The architecture is parallelizable
along the time dimension (during
training or scoring)

Easy access to many states from
the past

Bytenet/Wavenet

Background: Autoregressive Models Slide credit: Nal Kalchbrenner



Recurrent versus Causal Convolutional Nets

Deep RNN

- The architecture is parallelizable
along the time dimension (during
training or scoring)

Easy access to many states from
the past

Bytenet/Wavenet

Background: Autoregressive Models Slide credit: Nal Kalchbrenner



Recurrent versus Causal Convolutional Nets

Deep RNN

- The architecture is parallelizable
along the time dimension (during
training or scoring)

Easy access to many states from
the past

Bytenet/Wavenet

Background. Autoregresswe Models Slide credit: Nal Kalchbrenner



Recurrent versus Causal Convolutional Nets

Deep RNN

- The architecture is parallelizable
along the time dimension (during
training or scoring)

- Easy access to many states from
the past

T
1/1%/1(1 )
SEESRER GRS

Background: Autoregressive Models

Slide credit: Nal Kalchbrenner



Recurrent versus Causal Convolutional Nets

Deep RNN

- The architecture is parallelizable

along the time dimension (during
training or scoring)
e _ Easy acoess to many states from
the past

& - ¢ @ . ®

Background: Autoregressive Models

Slide credit: Nal Kalchbrenner



NMT with dilated causal convolutions

Background: Autoregressive Models

Slide credit: Nal Kalchbrenner



NMT with dilated causal convolutions

Background: Autoregressive Models

Stacking preserves resolution
compared to seq2seq LSTM

Dynamic unfolding enables
variable length outputs

Linear time computation

Slide credit: Nal Kalchbrenner



Convolutlonal MT models W|th attention

<> They agree <s> <p> la maison de Léa <end>
Embeddings

iiiii

CH H H H H ] I:Il:]:ll:l

<p> <p> <s> Sie stimmen zu Sie stimmen zu

1. Gehring, Jonas, et al. "Convolutional Sequence to Sequence Learning." In ICML, 2017.
Background: Autoregressive Models 23



Attention-only () autoregressive models

The Transformer

e Not Recurrent

e Not Convolutional

e Dot-product attention over inputs is
masked to preserve causal structure.

n

1. Vaswani, Ashish, et al. "Attention is all you need”.

In NIPS, 2017

Background: Autoregressive Models
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Self-Attention

Convolution Self-Attention

Att is all you need,
Vaswani, et al, 2017

Background: Autoregressive Models o5



Self-Attention

Convolution Self-Attention

Att is all you need,
Vaswani, et al, 2017

Background: Autoregressive Models 26



Modeling Images

Pixel-by-pixel Group-by-group

https://giphy.com/gifs/televsion-13epOe3Z06gHba Reed et al. “Parallel Multiscale

) Autoregressive Density Estimation.”
Background: Autoregressive Models




Modeling Images pixel-by-pixel

N

P(;6) = [[ P@alocni6) bt
n=1
vl

Each factor can be modeled by a
shared network (e.g. PixelCNN).

Background: Autoregressive Models 8




Causal Convolutions

Spatially Colors

Background: Autoregressive Models



Pixel receptive fielc
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Background: Autoregressive Mode
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Modeling images group-by-group

G
P(z;0) = | | P(x9]x~; 6)

TN

All pixels All pixels in all
in group g preceding groups

e Group structure encodes conditional independence assumptions.
e If G << N, sampling is cheaper than in pixel-by-pixel.

Background: Autoregressive Models

32



Parallel Autoregressive models in 2D

mEmEm ¢ WentfromO(N)factors to O(1)...
mmmm ¢ Waitl Where did these group 1 pixels
o -come from?
e |f we have enough context to model them
EEEH as independent, generate in parallel.
1 e Otherwise, recurse.

Background: Autoregressive Models 33



Parallel Autoregressive models in 2D

H B L 5'5.
H B L NN
= =
1 1— 2 1,2— 3

e [n total then, there will be O(log N) factors.

Background: Autoregressive Models

1,2,3— 4

34



Parallel Autoregressive models in 3D

1,2,3,4—5 1,2,3,4,5-6 : 1,2,3,4,5,6,7-8

1.  Angela Dai et al. “ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans”.

Background: Autoregressive Models 35



Application: Learning to Complete 3D Scans

Virtually scan synthetic data

Scenes from SUNCG [Song et al. 17]

1.  Angela Dai et al. “ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans”.

Background: Autoregressive Models 36



Application: Learning to Complete 3D Scans

Completion Ground Truth

._F N

;ij LnE

Scenes from SUNCG [Song et al. 2017]

1.  Angela Dai et al. “ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans”.

Background: Autoregressive Models 37



Application: Learning to Complete 3D Scans

Input Completion Ground Truth

Background: Autoregressive Models

38



Part I: Background

Generative Adversarial Networks



lan Goodfellow et al., “Generative

Training GANS: TWO-pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network

Fake Images _ Real Images
(from generator) | G"’ (from training set)
A
Generator Network

*

Random noise 4

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017
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. . . lan Goodfellow et al., “Generative
Tra| NI ng GANS TWO-player game Adversarial Nets”, NIPS 2014
Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Em,\,pdam log Dy, (z) + E,p(z) log(1 — Dg,(Go, (Z)))]
0, 64 L L j

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 13 - May 18, 2017

8




Recent breakthrough: Progressive Training

Latent Latent Latent

ﬁﬁ
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1. Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." ICLR,

2018. Trends and Frontiers in Deep Generative Models
— Scott Reed



Part Il: Frontiers

Learning from Limited Data



Learning from Limited Data - Attention PixelCNN

P(x|s;0) = [| Pailai, £(5);0)

\

Let s be a small
At each pixel t, attend to s training set.

using latest context.

1. Reed, Scott, et al. "Few-shot Autoregressive Density Estimation: Towards Learning to Learn
Distributions." ICLR, 2018.

Trends and Frontiers in Deep Generative Models

Frontiers: Learning from limited data ~ Scott Reed



Learning from Limited Data - Attention PixelCNN

Time  Supports + attention Sample Supports + attention Sample Supports + attention Sample

AN RN NEER

Frontiers: Learning from limited data



Part Il: Frontiers

Predicting Far into the Future



The Problem: Cascading Errors

Using Convolutional LSTM
No within-frame dependencies
1. Kalchbrenner, Nal, et al. "Video Pixel Networks." ICML, 2017.

Frontiers: Predicting far into the future



Solution #1: Train a really good model.
Take into account within-frame dependencies.

Fey F, Fey 5
R R
G T G T
B B




Bouncing MNIST

Using Convolutional LSTM Using a very well-trained
No within-frame dependencies Autoregressive model

1. Kalchbrenner, Nal, et al. "Video Pixel Networks." ICML, 2017.

Frontiers: Predicting far into the future



Robot pushing dataset

Using Convolutional LSTM Using a very well-trained
No within-frame dependencies Autoregressive model
1. Kalchbrenner, Nal, et al. "Video Pixel Networks." ICML, 2017.

Trends and Frontiers in Deep Generative Models

Frontiers: Predicting far into the future = Scott Reed



... But, eventually it blows up too, sometime
after 20 frames.

Trends and Frontiers in Deep Generative Models

Frontiers: Predicting far into the future ~ Scott Reed



Solution #2: Model global structure using VAE
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1. Babaeizadeh, Mohammad, et al. "Stochastic Variational Video Prediction." ICLR, 2018

Frontiers: Predicting far into the future

Trends and Frontiers in Deep Generative Models
— Scott Reed



|
28 28 (zoom)

ers in Deep Generative Models
— Scott Reed



Solution #3: Generate video hierarchically

Pose
Estimation

Image
Generation

1. Villegas, Ruben, et al. "Learning to Generate Long-term Future via Hierarchical Prediction." ICML, 2017.

Frontiers: Predicting far into the future
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Part Il: Frontiers

Generative Models for Agents



Exploration: Montezuma's Revenge

(T

We-trained-DQN Jwith

novelty-hﬁ{éﬁ re

|ards.

1. Bellemare, Marc, et al. "Unifying count-based exploration and intrinsic motivation." NIPS, 2016.

1N

Frontiers: Generative Models for Agents


http://www.youtube.com/watch?v=0yI2wJ6F8r0

Using density models to improve exploration

Prediction Gain (PG) at time step n:

PG (z) = log p1(z) — log pu ()

J

Y Y

Log-likelihood Log-likelihood
after seeing x.  before seeing x.

1. Ostrovski, Georg, et al. "Count-Based Exploration with Neural Density Models." ICML, 2017.

Trends and Frontiers in Deep Generative Models

Frontiers: Generative Models for Agents ~ Scott Reed



Pseudo-Counts

Desired property: a single observation of x should lead to a unit increase in
pseudo-count:

N, (x) ; N, () +1
n m — A y) n x — A
With some algebra, we can define N _(x) only using the density model:
. (z)(1 = o
S, () — @)1= 21 (@)

p,.’,L(.’L‘) o pn(x)

1. Ostrovski, Georg, et al. "Count-Based Exploration with Neural Density Models." ICML, 2017.



Reward bonus

N_(x) can be estimated using the prediction gain:

” —1
Np(z) ~ (ePG” ) 1)
Use N (x) to provide dense rewards as a “reward bonus”.

() = (Nn(2)) 7

1. Ostrovski, Georg, et al. "Count-Based Exploration with Neural Density Models." ICML, 2017.

Trends and Frontiers in Deep Generative Models
— Scott Reed
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Trends and Frontiers in Deep Generative Models
— Scott Reed



Using generative models for planning in Sokoban

1. Racaniére, Sébastien, et al. "Imagination-Augmented Agents for Deep Reinforcement Learning." NIPS. 2017.

Frontiers: Generative Models for Agents


http://www.youtube.com/watch?v=llwAwE7ItdM

Using generative models for planning in Sokoban

a) Imagination core

Policy Net  Env. Model Fhe,

internal state

fixed input

1. Racaniére, Sébastien, et al. "Imagination-Augmented Agents for Deep Reinforcement Learning." NIPS. 2017.

Trends and Frontiers in Deep Generative Models

Frontiers: Generative Models for Agents ~ Scott Reed



fraction of levels solved

Learning curves

Sokoban performance

Model-free baselines

unroll depth analysis
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Trends and Frontiers in Deep Generative Models
— Scott Reed



Bridging the simulation to reality gap

(b) Synthetic Images
Adapted with our Approach

(a) Synthetic Images (c) Real Images

1.  Bousmalis et al. “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”.

Frontiers: Generative Models for Agents
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GraspGAN
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1.  Bousmalis et al. “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping”.

Frontiers: Generative Models for Agents 66



Conclusions

e Deep generative models are already ubiquitous in
consumer applications, using autoregressive models:
o Android text-to-speech
o Neural machine translation

e Generating high-res natural images is starting to work, in
narrow domains (e.g. faces).

e Generative models begin to be useful for agents on
simple tasks (Atari, grasping).

Conclusions



Thank Youl!



Questions?



