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Implementation

•Cholesky decomposition is numerically stable 

•Can be used to compute inverse efficiently
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Algorithm 1: GP regression

Data: training data (X,y), test data x⇤
Input: Hyper parameters �2

f , l, �
2
n

Kij  k(xi,xj)
L cholesky(K + �2

yI)
↵ LT \(L\y)
E[f⇤] k

T
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var[f⇤] k(x⇤,x⇤)� v

T
v

log p(y | X) � 1
2y
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P

i logLii � N
2 log(2⇡)

Precomputed 
during Training

Test Phase
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Estimating the Hyperparameters

To find optimal hyper parameters we need the 
marginal likelihood: 

This expression implicitly depends on the hyper 

parameters, but y and X are given from the 
training data. It can be computed in closed form, 
as all terms are Gaussians.  

We take the logarithm, compute the derivative 

and set it to 0. This is the training step.
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p(y | X) =

Z
p(y | f , X)p(f | X)df
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Estimating the Hyperparameters

The log marginal likelihood is 
not necessarily concave, i.e. it 
can have local maxima. 

The local maxima can 
correspond to sub-optimal 
solutions.
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Automatic Relevance Determination

•We have seen how the covariance function can 

be generalized using a matrix M 

•If M is diagonal this results in the kernel function  

•We can interpret the     as weights for each 
feature dimension 

•Thus, if the length scale              of an input 
dimension is large, the input is less relevant 

•During training this is done automatically
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k(x,x
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Automatic Relevance Determination

During the optimization process to learn the 
hyper-parameters, the reciprocal length scale for 
one parameter decreases, i.e.: 

This hyper parameter is not very relevant!
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3-dimensional 
data, parameters 
                as they 
evolve during 
training
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Gaussian Processes For Classification

In regression we have          , in binary 
classification we have   

To use a GP for classification, we can apply a 
sigmoid function to the posterior obtained from 
the GP and compute the class probability as: 

If the sigmoid function is symmetric: 
then we have                            . 

A typical type of sigmoid function is the logistic 
sigmoid: 
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y 2 R
y 2 {�1; 1}

p(y = +1 | x) = �(f(x))

�(�z) = 1� �(z)

p(y | x) = �(yf(x))

�(z) =
1

1 + exp(�z)
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Application of the Sigmoid Function

Function sampled from  
a Gaussian Process
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Sigmoid function applied to 
the GP function

Another symmetric sigmoid function is the 
cumulative Gaussian:

�(z) =

Z z

�1
N (x | 0, 1)dx
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Visualization of Sigmoid Functions

The cumulative Gaussian is slightly steeper than 
the logistic sigmoid
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The Latent Variables

In regression, we directly estimated f as 
 
and values of f where observed in the training 

data. Now only labels +1 or -1 are observed and 

f  is treated as a set of latent variables. 

A major advantage of the Gaussian process 

classifier over other methods is that it 

marginalizes over all latent functions rather 

than maximizing some model parameters.
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f(x) ⇠ GP(m(x), k(x,x0))
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Class Prediction with a GP

The aim is to compute the predictive distribution
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

�(f⇤)
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

predictive distribution of the 
latent variable (from regression)
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data: 

we need the posterior over the latent variables:
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p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

p(f | X,y) =
p(y | f)p(f | X)

p(y | X)

likelihood 
(sigmoid)

prior

normalizer
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A Simple Example

•Red: Two-class training data 

•Green: mean function of 

•Light blue: sigmoid of the mean function 
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p(f | X,y)
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But There Is A Problem...

•The likelihood term is not a Gaussian! 

•This means, we can not compute the 
posterior in closed form. 

•There are several different solutions in the 
literature, e.g.: 

•Laplace approximation 

•Expectation Propagation 

•Variational methods
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p(f | X,y) =
p(y | f)p(f | X)

p(y | X)
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Laplace Approximation

where 

and  

To compute    an iterative approach using 
Newton’s method has to be used. 

The Hessian matrix H can be computed as 

where                                  is a diagonal matrix 
which depends on the sigmoid function.
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ˆf = argmax

f
p(f | X,y) second-order 

Taylor expansion

f̂

W = �rr log p(y | f)

p(f | X,y) ⇡ q(f | X,y) = N (f | f̂ , H�1)

H = �rr log p(f | X,y)|f=f̂

H = K�1 +W
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Laplace Approximation

•Yellow: a non-Gaussian posterior 

•Red: a Gaussian approximation, the mean is 
the mode of the posterior, the variance is the 
negative second derivative at the mode
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Now that we have                 we can compute:  

From the regression case we have:  

where 

This reminds us of a property of Gaussians that 
we saw earlier!

p(f | X,y)
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Predictions
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p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

⌃⇤ = k(x⇤,x⇤)� k

T
⇤ K

�1
k⇤

p(f⇤ | X,x⇤, f) = N (f⇤ | µ⇤,⌃⇤)

µ⇤ = kT
⇤ K

�1f

Linear in f
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Gaussian Properties (Rep.)

If we are given this: 

                  I. 

                  II. 

Then it follows (properties of Gaussians): 

     III. 

     IV. 

where 

20

p(x) = N (x | µ,⌃1)

p(y | x) = N (y | Ax+ b,⌃2)

p(y) = N (y | Aµ+ b,⌃2 +A⌃1A
T )

p(x | y) = N (x | ⌃(AT⌃�1
2 (y � b) + ⌃�1

1 y),⌃)

⌃ = (⌃�1
1 +AT⌃�1

s A)�1



V[f⇤ | X,y,x⇤] = k(x⇤,x⇤)� k

T
⇤ (K +W�1)�1

k⇤
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Applying this to Laplace

It remains to compute  

Depending on the kind of sigmoid function we 

• can compute this in closed form (cumulative 
Gaussian sigmoid) 

• have to use sampling methods or analytical 
approximations (logistic sigmoid)
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E[f⇤ | X,y,x⇤] = k(x⇤)
TK�1

f̂

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤
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A Simple Example

•Two-class problem (training data in red and blue) 

•Green line: optimal decision boundary 

•Black line: GP classifier decision boundary 

•Right: posterior probability

22
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Summary 

• Kernel methods solve problems by implicitly mapping 
the data into a (high-dimensional) feature space 

• The feature function itself is not used, instead the 
algorithm is expressed in terms of the kernel 

• Gaussian Processes are Normal distributions over 
functions 

• To specify a GP we need a covariance function 
(kernel) and a mean function 

• More on Gaussian Processes: 
http://videolectures.net/epsrcws08_rasmussen_lgp/
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Motivation

• Supervised learning is good for interaction with 
humans, but labels from a supervisor are 
sometimes hard to obtain 

• Clustering is unsupervised learning, i.e. it tries to 
learn only from the data 

• Main idea: find a similarity measure and group 
similar data objects together 

• Clustering is a very old research field, many 
approaches have been suggested 

• Main problem in most methods: how to find a 
good number of clusters

25
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

26

learning from a training 
data set, inference on 

the test data

In unsupervised learning, there is no ground truth 
information given. 

Most Unsupervised Learning methods are based on 
Clustering.
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K-means Clustering

• Given: data set                    , number of clusters K 
• Goal: find cluster centers                      so that  
 
 
 
is minimal, where             if      is assigned to       

• Idea: compute       and      iteratively 

• Start with some values for the cluster centers 

• Find optimal assignments 

• Update cluster centers using these assignments 

• Repeat until assignments or centers don’t change 

27

J =
NX

n=1

KX

k=1

rnkkxn � µkk

{x1, . . . ,xN}

{µ1, . . . ,µK}

rnk = 1 xn µk

rnk µk

rnk

2
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K-means Clustering

28

{µ1, . . . ,µK}Initialize cluster means:
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

K-means Clustering
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Find optimal assignments:
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@J

@µk

= 2
NX

n=1

rnk(xn � µk)
!
= 0

) µk =

PN
n=1 rnkxnPN
n=1 rnk

K-means Clustering
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Find new optimal means:
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K-means Clustering
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

Find new optimal assignments:
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K-means Clustering

32

Iterate these steps until means and 
assignments do not change any more
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2D Example
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• Real data set 
• Random initialization

• Magenta line is “decision 
boundary”
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The Cost Function

• After every step the cost function J is minimized 

• Blue steps: update assignments 

• Red steps: update means 

• Convergence after 4 rounds

34
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K-means for Segmentation

35
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• K-means converges always, but the minimum is 
not guaranteed to be a global one 

• There is an online version of K-means  

•After each addition of xn, the nearest center μk is 

updated: 

• The K-medoid variant: 

•Replace the Euclidean distance by a general measure 
V.

K-Means: Additional Remarks

36

µnew

k = µold

k + ⌘n(xn � µold

k )

J̃ =
NX

n=1

KX

k=1

rnkV(xn,µk)
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Mixtures of Gaussians

• Assume that the data consists of K clusters 

• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 

binary random variable z so that:  
 
 
 
where  

37

zk 2 {0, 1},
KX

k=1

zk = 1

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

A Simple Example

• Mixture of three Gaussians with mixing coefficients 

• Left: all three Gaussians as contour plot 

• Right: samples from the mixture model, the red 
component has the most samples
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Parameter Estimation

• From a given set of training data                    we 
want to find parameters 
so that the likelihood is maximized (MLE):  
 
 
 
or, applying the logarithm:  

• However: this is not as easy as maximum-
likelihood for single Gaussians!
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{x1, . . . ,xN}
(⇡1,...,K ,µ1,...,K ,⌃1,...,K)

p(x1, . . . ,xN | ⇡1,...,K ,µ1,...,K ,⌃1,...,K) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

log p(X | ⇡,µ,⌃) =
NX

n=1

log

KX

k=1

⇡kN (xn | µk,⌃k)
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Problems with MLE for Gaussian Mixtures

• Assume that for one k the mean     is exactly at a 
data point 

•For simplicity: assume that  

•Then:   

•This means that the overall log-likelihood can be 
maximized arbitrarily by letting              (overfitting)            

• Another problem is the identifiability: 

•The order of the Gaussians is not fixed, therefore: 

•There are K! equivalent solutions to the MLE problem

40

µk

xn

⌃k = �2
kI

�k ! 0

N (xn | xn,�
2
kI) =

1p
2⇡�D

k
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Overfitting with MLE for Gaussian Mixtures

• One Gaussian fits exactly to one data point 

• It has a very small variance, i.e. contributes 
strongly to the overall likelihood 

• In standard MLE, there is no way to avoid this!
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Expectation-Maximization

• EM is an elegant and powerful method for MLE 
problems with latent variables 

• Main idea: model parameters and latent variables 
are estimated iteratively, where average over the 
latent variables (expectation) 

• A typical example application of EM is the 
Gaussian Mixture model (GMM) 

• However, EM has many other applications 

• First, we consider EM for GMMs

42
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Expectation-Maximization for GMM

• First, we define the responsibilities:

43

�(znk) = p(znk = 1 | xn) znk 2 {0, 1}
X

k

znk = 1
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Expectation-Maximization for GMM

• First, we define the responsibilities:

44

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)


